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1. Executive Summary 
This report describes work to develop an understanding of relationships between satellite surface 
temperature observations and surface air temperature, in order to use satellite retrievals to derive 
air temperature fields with unprecedented detail and accuracy and thus increase the density of 
surface air temperature information globally. The different surfaces addressed comprise ocean, 
land, ice and lakes. Empirical relationships have been determined using measurements made in 
situ, satellite observations and auxiliary information. The relationships have been determined 
separately for each surface type to account for the different physical conditions present. The land 
and ice regions use the satellite skin observations directly in combination with auxiliary information, 
whereas the ocean approach applies a spatially and seasonally varying offset to the observed sea 
surface temperatures. The final results, however, can be used to estimate air temperature on the 
same global grid for all surfaces with the same definition of a day.   

To estimate Marine Air Temperatures (MAT), the offset was calculated from Sea Surface 
Temperature (SST) and MAT measurements made by ships between 1963 and 2000. Validation 
against independent observations shows biases in the satellite derived MAT of around 0.1 to 
0.2°C. See section 3.2 for details on the MAT results.   

For the land, described in section 3.3, the main challenges for estimating Land Surface Air 
Temperature (LSAT) from satellite observed Land Surface Temperatures (LST), are the 
heterogeneity of the surfaces and residual cloud effects. The derived LSAT gives median 
differences within +/- 0.1°C and root mean square differences (RMSD) between 2.80 and 4.89°C, 
when compared against more than 10,000 independent observations. Estimation of the daily 
minimum temperature appears to be more accurate than daily maximum estimation.  

The high latitude ice-covered regions, presented in section 3.4, are challenging due to residual 
cloud contamination in the satellite observations and data sparsity. A data rescue effort was 
needed to secure in situ observations over the Arctic Sea Ice, Greenland Ice Sheet, Southern 
Ocean Sea Ice and the Antarctic Ice Sheet. The mean daily Ice surface Air Temperatures (IAT) 
derived from satellite observations have biases below 0.4°C and RMSD between 3.11 and 3.55°C 
for the four ice covered regions. The performance in estimating IAT is similar to that of ERA-Interim 
for all regions, except for the Greenland Ice Sheet where the satellite estimated IAT are 
consistently better.   

A different methodology had to be chosen over the lakes due to the lack of in situ observations 
there, as discussed in section 3.5. A modelling approach has been followed to assess the influence 
of lakes on LSAT to permit subsequent EUSTACE analyses to be more accurate in affected 
regions when meteorological observations are scarce. In addition, a method for estimating Lake 
Surface Water Temperature (LSWT) from nearby air temperature observations has been 
demonstrated to generate accurate time series of LSWTs.   

Simple tests using a physical model to estimate air temperature from satellite retrievals over 
ocean, land and ice have shown promising results and may be able to provide alternative 
relationship models (section 3.6). It is shown, however, that the estimated surface air temperatures 
are tightly coupled to the Numerical Weather Prediction (NWP) model fields used as input. This will 
make the performance dependent upon the quality of the NWP and will only to a limited degree 
include new information from the satellite observations. 
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In general, the outcome of the work within EUSTACE Task 1.4 “Derive relationships between 
different observation types for land, lakes, ocean, sea ice, and ice sheets” is very encouraging. 
Innovative methods have been developed that facilitate the use of satellite observations to provide 
new and unique information on global surface air temperature.  

However, estimation of surface air temperature from satellite observations is not a “done deal” 
when EUSTACE is finished. The lessons learned and future work in section 4 outline some of the 
difficulties that were met and highlight areas where future work could bring improvements in near 
surface air temperature estimates. Key areas include improvements in: surface air temperature 
consistency where two surface types meet (edgelands), deriving and understanding uncertainty 
estimates, inclusion of more satellite and in situ observations and a further utilization of the 
physical models. 

2. Project Objectives 
With this deliverable, the project has contributed to the achievement of the following objectives 
(DOA, Section B1.1): 

No. Objective Yes No 

1 

Intensively develop the hitherto immature use of Earth 
Observation estimates of Earth’s surface skin 
temperature to enable new Climate Data Records of 
the surface air temperature Essential Climate 
Variable (ECV) to be created, for all locations over all 
surfaces of Earth (i.e. land, ocean, ice and lakes), for 
every day since 1850. EUSTACE will achieve this by: 
combining information estimated from multiple 
satellites with surface air temperature measurements 
made in situ and creating complete analyses of 
surface air temperature, through the application of 
novel statistical in-filling methods.  x   

2 

Integrate these new daily surface air temperature 
Climate Data Records into a range of applications in 
Earth System Science and Climate Services and 
research, amongst others. EUSTACE will achieve this 
via the active and continuous engagement of trail-
blazer users, and the provision of products through 
already-existing user community data portals and 
service mechanisms, in standard formats.    x 

3 

Undertake and report detailed research into the 
relationships between surface skin temperature 
estimated from Earth Observation satellite 
measurements and surface air temperature observed 
in situ by conventional measurements, over all 
surfaces of the Earth, including the polar regions. This 
is likely to provide information useful for refining 
coupling in Earth system models.  x   
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4 

Create a sustainable, automated system at an 
appropriate level of maturity for the potential 
production of the products beyond the lifetime of the 
project. To enable this, EUSTACE will also identify 
Earth Observation and conventional data streams that 
could be used to update the surface air temperature 
Climate Data Records in the future, including those 
from Sentinel missions.    x 

5 

Extensively validate the new surface air temperature 
Climate Data Records against independent, surface-
based reference data, sourced by the project for this 
purpose. 

 x   

6 

Develop and report new, consistent, validated 
estimates of uncertainty both in already-existing Earth 
Observation surface skin temperature estimates and 
in the new surface air temperature Climate Data 
Records, at all locations and times across the Earth’s 
surface.  x   

7 

Develop links with related activities within Europe and 
beyond to help to ensure the execution of a joined-up 
work programme, the Copernicus Services and to 
enable the provision of requirements for the future 
surface skin temperature and surface air temperature 
observing system. 

 
x 

8 Other – not directly linked to one of the above 
objectives 

 
x 

 

 

3. Detailed Report  

3.1 General Introduction  
Daily near surface air temperature is one of the most crucial variables used in weather and climate 
science and service provision around the world and is one of the Global Climate Observing System 
(GCOS) Essential Climate Variables (ECV). Traditionally, information on near surface air 
temperature has been obtained from meteorological station measurements. However, air 
temperature observations are not available everywhere on Earth and vast areas exist with very 
limited observations e.g., the Polar Regions and Southern Ocean. Moreover, the time series 
available may contain gaps or have limited length and the observations at meteorological stations 
may not be representative of air temperatures at neighbouring locations.   
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This work has been carried out to develop methods to estimate near surface air temperatures from 
satellite data for all surfaces of the Earth: oceans, land, lakes and ice, to supplement the available 
in situ observations. To achieve this, detailed research into the relationship between air and 
surface (skin) temperatures has been carried out. Temporally and spatially collocated observations 
have been used to investigate their relationship in well-observed regions and afterwards the 
findings have been applied to estimate air temperatures for all surfaces of the Earth.  

Due to physical differences and differences in the observed heat fluxes and temperature variability, 
the skin to near air surface relationships have been explored separately for each of the surfaces: 
oceans, land, lakes and ice. However, a close communication and exchange of ideas has been 
maintained between the EUSTACE partners, to ensure that consistent products have been 
developed, to facilitate user uptake and to aim for a consistent product at the boundaries between 
the products, such as the land-ocean boundary or the ocean-sea ice interface.  

This report describes the final outcome of EUSTACE WP1 Task 1.4, where relationships between 
satellite-observed surface temperatures and near surface air temperatures have been developed. 
The relationships and the derived near surface air temperatures are important stand-alone 
products; they will also be used in the EUSTACE WP2: “Data set construction”.   

Sections 3.2-3.4 report the work carried out independently for each surface to develop the 
empirical models for the ocean, ice and land regions. To help the reader, we have aimed at the 
same structure for the each of these sections. Due to data sparseness, the empirical approach 
could not be followed for lakes. Section 3.5 therefore describes an alternative approach for lakes 
that deviates from that employed for the other surfaces.  

Results from a collaborative effort using a simple physical model to derive near surface air 
temperatures from satellite skin temperature observations over oceans, land and ice are described 
in section 3.6. This section serves as an outlook to assess the potential of the physical models in 
next generation products.  

3.2 Relationships over oceans  

3.2.1 Summary of ocean relationships  
Marine air temperatures (MAT) were estimated from sea-surface temperature (SST) both 
measured in situ and retrieved from satellite measurements. MAT was calculated by adding a 
spatially and seasonally-varying offset to the SST. The offset was calculated using bias-adjusted 
SST and MAT measurements made by ships between 1963 and 2000. Uncertainty in the 
estimated MAT was estimated by analysing the variance of daily deviations from the climatological 
average offset. The average offsets were then used to predict MAT from SST for ships between 
1995 and 2005. This overlaps the training period to test if there is a discontinuity at the ends of the 
training period. The mean bias was around 0.1 to -0.2°C, and the normalised standard deviation of 
errors was between 0.7 and 1.3, which indicates that the uncertainties are correct to within 30%. 
The errors were normalised by the standard deviation because the standard deviations (and the 
estimated range of the errors) vary between 0.1°C and 5.0°C. Application to satellite data and 
comparison of the satellite-derived air temperatures to in situ data not used in the estimation of the 
relationships shows a small warm bias of around 0.1-0.2°C, which indicates there is a residual 
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systematic error of order 0.1°C, which is consistent with the estimated uncertainty associated with 
systematic errors. 

3.2.2 Data 
Assessment of the sea-surface temperature/air temperature relationship over the oceans was 
based on analysis of in situ data from ICOADS release 2.5.1 (Woodruff et al. 2011). 

The data are taken from ship reports in which both sea-surface temperature (SST) and marine air 
temperature (MAT) were measured. During the day, MAT measurements from ships are biased 
warm due to solar heating of the ships’ superstructures so only night time MAT (NMAT) 
observations are used here. Night time is defined to be the period between one hour after sunset 
and one hour after sunrise to allow time for the effect of the ships’ heating to dissipate. 

Solar heating is not the only source of bias in the NMAT measurements. Changes in the height of 
the observing deck of the ship can also lead to artificial trends in the data if left uncorrected. 
Adjustments were applied to the NMAT data to account for changes in the measurement height. 
The adjustments were based on the method described in Kent et al. (2013), but referenced to a 
consistent observing height of 2m rather than 10m for consistency with the other surface types in 
EUSTACE. 

SST measurements also suffer from systematic errors. The sources of these errors and the 
adjustments that are applied to account for them are described in Kennedy et al. (2011). 
Adjustments developed for individual SST measurements were applied to the SST reports as 
described in Atkinson et al. (2013). The adjustments aim to ensure that the SSTs are consistent 
with drifting buoy data, which have a nominal measurement depth of 0.2m. 

The NMAT and SST data were quality controlled (QCed) using a system based on an update of 
Rayner et al. (2006) (Kennedy et al. in prep). 10% of the observations in each year were withheld 
for validation in WP3. 

Additional in situ data for estimating the diurnal temperature range were sourced from the Global 
Tropical Moored Buoy Array and from research moorings archived at Woods Hole Oceanographic 
Institute (http://uop.whoi.edu/projects/projects.html). These moored buoys make frequent 
measurements of air temperature and near-surface water temperature. For some of the moorings 
however, the air temperature sensors suffer from ventilation errors, which affect day time 
observations (Anderson and Baumgartner 1998). 

The modelled relationships derived from the in situ data were used to estimate air temperatures 
based on satellite-retrieved SSTs. The satellite-retrieved SSTs were a version of the SST CCI 
ATSR dataset (Merchant et al. 2014) regridded to daily 0.25° latitude/longitude resolution. This 
data set is based on the Along Track Scanning Radiometer (ATSR) series of instruments and is 
provided with uncertainty information, which is decomposed into three components associated with 
errors arising from: uncorrelated effects, locally correlated effects and systematic effects. The 
locally correlated error component is assumed to have a temporal scale of around 1 day and a 
length scale of 100km. The systematic error is assumed to be correlated perfectly in space and 
time, but is different for each of the satellite sensors of which two were used here: ATSR2 and 
AATSR. ATSR1 was not used owing to remaining difficulties with retrievals from the ATSR1 
instrument. 
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3.2.3 Variability of the SST vs MAT relationship and our model 
Existing data sets of air-sea temperature difference (Parker et al. 1995) show that the air 
temperature is, on average, 1 to 2°C cooler than the sea-surface but with significant geographical 
and seasonal variations. In some areas, such as at the continental margins, there are significant 
deviations from the climatological average. Therefore, the modelled relationships between sea-
surface temperature and air temperature developed here are based on an assessment of the 
climatological average difference (used to infer MAT from SST) and on the climatological variance 
of the difference (used to estimate the uncertainty in the MAT). 

Given an estimate of SST the MAT is modelled as: 

MAT(s,t) = SST(s,t) + δ(s,t) + error    (Eq. 3.2.1) 

where δ is the climatological average offset modelled as a Fourier series, 

δ(s,t) = a0(s)+ a1(s)Sin(2πd/365) + a2(s)Cos(2πd/365) + a3(s)Sin(4πd/365) + a4(s)Cos(4πd/365) 

(Eq 3.2.2) 

where d is the day of the year (from 0 to 365), the ai are the Fourier coefficients estimated without 
interpolation, and the error term has components arising from: 

1. SST measurement error which, in the case of satellite data, will itself have uncorrelated, locally 
correlated and systematic components. 

2. The climatological variance of the air-sea temperature difference, which is assumed to be 
normally distributed with mean zero and variance σvar2(s,d) (estimation of the variance is 
described in Section 3.2.3.3) and is locally correlated in space and time (length and time scales 
are described in Section 3.2.3.5). 
 

σvar2(s,d) = b0(s) + b1(s)Sin(2πd/365) + b2(s)Cos(2πd/365) + b3(s)Sin(4πd/365) + 
b4(s)Cos(4πd/365) 

 
3. Systematic uncertainty in the bias adjustments applied to the in situ data, estimated to be 

around 0.1°C and correlated in space and time. 
4. The uncertainty in the Fourier coefficients, a0, a1, a2, a3 and a4, are described by the error 

covariance matrix cov(ai, aj) and the square roots of the diagonal terms are given in the netcdf 
file as. The errors in the Fourier components are assumed to be uncorrelated in space. 

NMAT-SST differences were calculated for each marine report in ICOADS v2.5.1 that had both an 
SST and NMAT measurement that passed QC. These Air-Sea Temperature differences (AST) 
were averaged onto a regular 1° latitude by 1° longitude by 5-day grid from 1963 to 2000. 

3.2.3.1 Calculating a climatology of mean air-sea temperature difference 
A 1° by 1° by 5-day AST climatology was calculated by averaging together all equivalent 5-day 
periods from 1963 to 2000 that contained data. A mean offset and the coefficients of four Fourier 
components were then estimated using multiple linear regression to obtain a smoothed annual 
cycle for that grid cell. The four Fourier components are: 

Sin(2πd/365), Cos(2πd/365), Sin(4πd/365) and Cos(4πd/365)  
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Where d is the day in the year starting from 0 on January 1st and ending with 364 on December 
31st. This allows us to estimate an annual cycle in a grid box, even if there is not a complete 365 
days’ data there when averaged over 1963-2000. 

The Fourier coefficients estimated at 1° by 1° resolution contained some outliers. Removing grid 
cells where the coefficients exceeded 300 or the estimated uncertainty in the coefficient exceeded 
180 removed most obvious outliers. 

Uncertainties in the weightings given to each of the Fourier components were estimated from the 
multiple regressions and used to estimate the uncertainty in the climatology. By construction, the 
errors in each coefficient lead to errors in the estimated air temperatures that are fully correlated in 
time, but negligibly correlated in space. 

The climatological fields derived from these parameters remain somewhat noisy and incomplete 
(Figure 3.2.1). In some areas there have been too few coincident NMAT-SST observations in the 
period 1963 to 2000 to obtain a reliable estimate even with the Fourier interpolation. 

  

 

Figure 3.2.1: Mean air-sea temperature difference (°C) from the Fourier-smoothed climatology (top) for 
January 2nd and June 30th. Standard deviation of the air-sea temperature difference (°C) from the Fourier-
smoothed climatology (bottom) for January 2nd and June 30th. 
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3.2.3.2 Interpolating the climatology of the mean air-sea temperature difference 
A second climatology, with improved coverage, was produced by interpolating the Fourier 
coefficients using Kriging. 

First, a separate 5° by 5° by 1-month AST climatology was calculated by averaging the 1° by 1° by 
5-day climatology. Coefficients for the same four Fourier components were then estimated based 
on the monthly data. The coefficients estimated at 5° by 5° resolution also contained a small 
number of outliers close to the ice edge which were removed by removing cells where the 
coefficients exceeded 500 or the uncertainty was greater than 110. 

The coverage of coefficients at both 1° (from Section 3.2.3.1) and 5° resolution was then expanded 
slightly using a neighbour average and the 5° coefficients were interpolated to 1° using bilinear 
interpolation. The coverage of the interpolated 5° coefficients was near global. 

For each Fourier component, differences were calculated between the coefficients originally 
estimated at 1° and the 1° estimates interpolated from 5°. This residual was then Kriged using 
fixed length and scale parameters and the Kriged residuals added back to recover a near-
complete, smoothed estimate of the coefficients (Figure 3.2.2). 

Uncertainties in the coefficients of each of the Fourier components were estimated from the 
multiple regressions (at 5° resolution) and used to estimate the uncertainty in the climatology. By 
construction, the uncertainties in the coefficients are perfectly correlated in time, but after Kriging, 
they are also somewhat correlated in space too in a way that is not easy to summarise or estimate, 
so it is recommended that the Kriged values are not used for infilling. The resulting fields are 
generally smoother, except at the edge of the observed regions where uncertainties are locally 
large.  
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Figure 3.2.2: Mean air-sea temperature difference (°C) from the Fourier-smoothed and Kriged 
climatology (top) for January 2nd and June 30th. Standard deviation of the air-sea temperature 
difference (°C) from the Fourier-smoothed and Kriged climatology (bottom) for January 2nd and 
June 30th. 

3.2.3.3 Calculating a climatology of air-sea temperature difference variability – 
estimating uncertainty in the air temperature estimates 
Daily residuals from the Fourier-smoothed climatology (the non-Kriged version, initially, see section 
3.2.3.4) were calculated for every day from January 1st 1963 to December 31st 2000 and 
averaged on to a regular 1° latitude by 1° longitude by 1-day grid. Note this is different from the 5-
day grid used to calculate the mean as we are interested particularly in the daily variability for 
EUSTACE. Analysing the daily differences between the climatological AST and the actual AST will 
provide an estimate of the uncertainty in the air temperatures derived using the relationships and 
the spatial and temporal correlations of the likely errors (Section 3.2.3.5). 

A 1° by 1° by 1-day AST standard deviation climatology was calculated for each day using data in 
a 9-day window centred on the day of interest. The AST standard deviation was calculated by 
assuming that deviations from the climatology were normally distributed with mean zero and a 
variance equal to the sum of the squares of the AST standard deviation and the measurement 
error uncertainty expressed as a standard deviation. The measurement error uncertainty for the 
daily grid cell averages was estimated to be approximately 1.4°C divided by the square root of the 
number of observations that contributed to the daily average. The AST standard deviation was 
varied between zero and 5°C in 0.05°C increments and the chosen value was the one that 
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maximised the likelihood of the data assuming the deviations were normally distributed. The 
uncertainty of 1.4°C assumes that both the SST and MAT measurements from the ship each had a 
measurement error uncertainty of around 1°C (Kent and Berry 2008). In some grid cells, the best 
estimate standard deviation was zero, which is unlikely to be correct. A lower bound of 0.3°C was 
set, consistent with the lower range of estimated AST variability in well-observed regions. 

A mean and four Fourier components were then fitted to the estimated daily AST standard 
deviations for each 1° by 1° grid cell to obtain a smoothed annual cycle for the standard deviation 
in that grid cell (Figure 3.2.1). 

Grid cells where the coefficients exceeded 2000 or the uncertainty exceeded 10000 were set to 
missing. These thresholds were determined by a visual inspection of the data. As before a monthly 
5° data set was produced and the coefficients were re-estimated at this scale and then interpolated 
back to 1°. Grid cells for which the coefficients estimated from the daily data were more than 100 
below those estimated from the monthly data and where the uncertainty was unbelievably small 
(less than 2) were set to missing. Grid cells for which the coefficients estimated from the daily data 
were more than 200 below those estimated from the monthly data were set to missing as long as 
they were not in the Gulf Stream. In other high gradient regions, this was not a problem. 

As with the mean fields, the climatology produced without interpolation gives rather poor coverage 
in some areas. 

3.2.3.4 Interpolating the climatology of air-sea temperature difference variability 
Daily residuals from the Fourier-smoothed climatology (the Kriged version this time) were 
calculated for every day from January 1st 1963 to December 31st 2000 and averaged on to a 
regular 1° latitude by 1° longitude by 1-day grid. The procedure then continued as above. As in 
Section 3.2.3.2, the residual differences between the daily and monthly estimated coefficients were 
Kriged and then Kriged residuals were added back onto the monthly-estimated coefficients. 
Results are shown in Figure 3.2.2. 

3.2.3.5 Estimating the temporal and length scales of air-sea temperature difference 
variability 
A correlation length scale for the AST standard deviation (and hence the errors in the estimated air 
temperature) was estimated by calculating a variogram from the gridded daily data. The root mean-
squared difference between AST anomalies as a function of separation between the two 
measurements (Figure 3.2.3) increases steadily from zero km to around 2500km, suggesting an 
exponential decay in correlation with an approximate length scale (e-folding) of around 1000km. 
This is a global estimate. Likewise, a temporal variogram was calculated by taking the root mean-
squared difference between AST anomalies as a function of separation between the two 
measurements in time. The variance increases rapidly at first and then more slowly. The initial 
rapid rise is likely due to measurement error in the estimates and the slow rise more likely arises 
from correlations in the air temperature field itself, implying a temporal scale for the uncertainty in 
the air temperature estimated of between 3 and 4 days. 
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Figure 3.2.3: estimated spatial (left) and temporal (right) variograms showing the root mean (and 
median) squared difference between daily gridded air temperature measurements as a function of 
separation in space (in km) and time (in days). 

3.2.3.6 Diurnal variability 
The relationships developed here are intended to provide an estimate of the air temperature at a 
time which is consistent with the sea-surface temperature retrieval. If the input SST was measured 
at 10.30am (as the satellite SSTs used in EUSTACE are) then the output marine air temperature 
should be the air temperature as measured at 10.30am. Any differences in the relationship through 
the daily cycle should therefore be absorbed into the estimated uncertainty. 

However, for the purposes of EUSTACE (where we are exploring the feasibility of providing 
information on Tmax and Tmin, as well as Tmean), it would be helpful to have a preliminary 
estimate of the diurnal temperature range (DTR) over the ocean. A low-resolution climatology of 
DTR in SST exists, based on monthly averages of drifting buoy data (Kennedy et al. 2007); no 
such data set exists for MAT. 

To assess the relationship between the average SST DTR and MAT DTR, data were obtained from 
research moorings. A number of these, including the Global Tropical Moored Buoy Array, are 
affected by solar heating biases which tend to increase the DTR of measured MAT. Data from 
research moorings provided by Woods Hole Oceanographic Institute were used to calculate 
average diurnal cycles for each mooring making measurements of both air temperature and sea-
surface temperature. 

For those moorings which do not have an obvious daytime heating bias, the average DTR for MAT 
was larger by 0.2 to 0.5°C than the average DTR for SST which implies – extrapolating from a 
handful of sites – that using SST DTR as an estimate of MAT DTR would lead to a systematic 
underestimate of the MAT DTR. However, the housings used for the sensors at these sites are the 
same as those used at other sites which do exhibit a clear daytime heating bias, which leaves 
open the possibility that a smaller heating bias remains in the data from these moorings. It is 
expected that MAT will be inherently more variable than SST because the air temperature can 
change more rapidly by advection. 
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3.2.5 Validation 
Ship data for the period 1995-2005 were used to test the relationships. Once again, coincident 
MAT and SST measurements from the same ship were used. The MAT was predicted using the 
SST and the offset described above. Two main diagnostics were calculated. 

1. The mean and median bias averaged on to a regular grid (to minimise geographical sampling 
bias that would occur if using individual marine reports). 

2. The standard deviation of the normalised “error” equal to the difference between the predicted 
MAT and the observed MAT divided by the estimated uncertainty. The estimated uncertainty 
combines the prediction uncertainty with the measurement error uncertainty in the SST 
measurement (~1°C) and the uncertainty in the MAT measurements (~1°C). 

The results of the validation are shown in Figure 3.2.4. Both diagnostics were calculated for every 
month from 1995 to 2005 (there are 11 orange and blue dots for each month in the figure). The 
average mean bias is around -0.15°C with a range of +0.2°C to -0.3°C. The mean would, ideally, 
be zero, but residual uncertainty in the in situ data used to calculate and validate the relationship 
are expected to be of order 0.1°C and month to month variability can be large even averaged 
across the globe because the in situ coverage is relatively sparse. 

 

Figure 3.2.4: Testing the relationships using ship data. (top left) global validation results. The blue 
points are the standard deviations normalised by the estimated uncertainty. The purple and orange 
points are the median and mean biases respectively. There is one point for each year and month 
from 1995 to 2005. (top right) Same but for the Northern Hemisphere, (bottom left) tropics, (bottom 
right) Southern Hemisphere. 

The standard deviation of the normalised errors should be around 1 if the uncertainties are 
correctly specified. An over estimate of the uncertainties would lead to a standard deviation less 
than 1 and an underestimate of the uncertainty to a standard deviation greater than 1. The 
estimated uncertainties are therefore slightly overestimated during summer months in the northern 
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hemisphere, but with a tendency to under-estimation in the Southern Hemisphere. By this 
measure, errors in the uncertainties are less than 30% on average. The uncertainty is dominated 
by the locally correlated climatological variability, which is large relative to other components. 
There is an indication that this uncertainty is underestimated in the southern hemisphere extra 
tropics, but reasonable elsewhere. 

3.2.6 Application to satellite data 
SST retrievals from the AATSR instrument for 2002-2012 were used to estimate MAT using the 
above method. The adjustments were bilinearly interpolated to the target 0.25° grid. We estimate 
Tmean and ten separate uncertainty fields (see Equation 3.2.3): 

1. Uncertainty from random uncorrelated errors from the satellite retrievals. 
2. Uncertainty from locally-systematic errors in the satellite SST retrievals which are correlated on 

approximately synoptic scales i.e. 100km and 1 day. 
3. Uncertainty from global systematic errors in the satellite SST retrievals, which are completely 

correlated in space and time. 
4. Uncertainty from locally-systematic errors arising from estimating MAT from SST, which are 

correlated with a length scale of approximately 1000km. 
5. Uncertainty from global systematic errors in the in situ data used to construct the climatology of 

AST difference. These are correlated in time and strongly correlated in space. 
6. -10. Uncertainty in the offset and Fourier components used to smooth the climatology. These 

are correlated in time (as modulated by the Fourier components), but uncorrelated in space. 
Coverage is typically lower than that of the satellite data because relationships between SST and 
MAT are not specified everywhere. Uncertainties are dominated by the locally correlated error 
component (number 4 in the list and shown in Figure 3.2.1 for two example days). 

3.2.7 Conclusion and outlook 
Marine air temperatures (MAT) were estimated from sea-surface temperature (SST) measured in 
situ and retrieved from satellite measurements. MAT was calculated by adding a spatially and 
seasonally-varying offset to the SST. The offset was modelled using differences between bias-
adjusted SST and MAT measurements made by ships between 1963 and 2000. An uncertainty in 
the estimated MAT was estimated by analysing the variance of daily deviations from the average 
offset. 

The average offsets were used to predict MAT from SST for ships between 1995 and 2005. The 
mean bias was around ± 0.2-0.3°C, and the normalised standard deviation of errors was within 
30% of the correct value, which indicates that the uncertainties are approximately correct, albeit 
rather large in some areas of high variability in air-sea temperature difference. 

Application to satellite SST retrievals and comparison for the satellite-derived air temperatures to in 
situ data not used in the estimation of the relationships shows a small warm bias of around 0.1-
0.2°C. Part of this is probably due to the fact that the in situ measurements are night time only 
whereas the SSTs are representative of temperatures at 10.30 am local time which is close the 
diurnal average. However, it is also consistent with the estimated systematic errors in the satellite 
and in situ records, which each amount to around 0.1°C. 
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Future improvements in the bias adjustments applied to in situ data – both SST and MAT –   
should help to reduce the residual biases in the relationships. There is likely some scope for 
reducing the size of the estimated uncertainties in high-variability regions such as the Gulf Stream 
using circulation indices. However, these regions are also well observed by in situ instruments. In 
other areas, the estimated uncertainties can be much lower – approaching a few tenths of a 
degree in places – which, even combined with the uncertainty in the satellite-retrieved SSTs is 
smaller than the typical error in an in situ air temperature measurement. This means that using 
accurate satellite retrievals of SST it is possible to get a more accurate estimate of the air 
temperature than can be obtained from a single in situ measurement. This means that the satellite 
derived MAT and the in situ MAT are likely to be complementary to one another in EUSTACE with 
satellites providing reliable information in open ocean areas that are only sparsely observed by 
ships. In areas where the satellite-derived MATs are less reliable owing to high variability of the air-
sea temperature difference, such as the Kuroshio and Gulf Stream, there are plentiful in situ 
observations. 

Solar heating biases prevent an accurate estimate of the diurnal temperature range of air 
temperature, which can likely be remedied only by making more carefully-sited measurements in 
future. 
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3.3 Relationships over land  

3.3.1 Introduction to land relationships 
Efforts to estimate land surface air temperature (LSAT) from satellite observations have been 
widely reported in the literature, with a notable increase in the number of publications on this 
subject in recent years (Benali et al., 2012; Chen et al., 2014; Good, 2015; Janatian et al., 2016; 
Kilibarda et al., 2014; Oyler et al., 2015; Parmentier et al., 2015).  This is largely due to: an 
increasing need to deliver LSAT data sets at higher spatial resolution; improvements in the quality 
and availability of satellite land surface temperature (LST) data (Trigo et al., 2008; Freitas et al., 
2010, Freitas et al., 2013; Wan, 2013; Wan 2016); and an improved understanding of the 
relationship between LST and LSAT (Gallo et al., 2011; Good, 2016; Mildrexler et al., 2011).  
However, other than Atmospheric Infrared Sounder (AIRS) atmospheric temperature profiles, 
which include a 12-hourly instantaneous estimate of the near-surface air temperature (AIRS 
Science Team/Joao Texeira, 2013), there are currently no multi-year, global satellite LSAT data 
sets in the public domain.  Since the AIRS data do not represent the daily extremes, Tmin and 
Tmax, and given the 50-km spatial resolution of these data - approximately a quarter of the 
EUSTACE target spatial resolution - a new satellite-derived LSAT product has been developed for 
EUSTACE. 

Nearly all previous studies concerned with estimating satellite-derived LSAT have adopted a 
statistical empirical approach to predicting LSAT from satellite infrared LST and other variables, 
such as vegetation and elevation (Benali et al., 2012; Chen et al., 2014; Good, 2015; Janatian et 
al., 2016; Oyler et al., 2015).  These studies have demonstrated that it is possible to achieve root-
mean squared differences (RSMD) between satellite-derived and station-measured LSAT 
observations of around 2-5 °C using this method, which is reasonable given the 1-3 °C accuracy of 
the current satellite LST data (Dash et al., 2002; Freitas et al., 2010, Freitas et al., 2013; Li et al, 
2013; Trigo et al., 2008) and inherent discrepancies in comparing point station and areal-averaged 
satellite data, which may amount to ~2 °C (K. Veal, University of Leicester, Personal 
Communication).  The approach adopted in EUSTACE has been to build on previous research in 
this field and develop a simple empirical statistical model that can be applied on a multi-decadal, 
global scale, without excessive computational expense.  To our knowledge, such a task has only 
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previously been attempted by Kilibarda et al. (2014), who estimated global daily LSAT for one year 
using satellite LST data from MODIS and spatio-temporal regression-Kriging.  The development of 
the EUSTACE satellite LSAT product is described in the following sections.  Section 3.3.2 
introduces the data sets used in the study.  The variability of the LST-LSAT relationship is explored 
briefly in section 3.3.3, while the LSAT statistical model is presented in sections 3.3.4 and 3.3.5.  
The model is evaluated in section 3.3.6, and concluding remarks are outlined in section 3.3.7.  The 
feasibility of using a physical model as an alternative approach to estimating LSAT using satellite 
data is explored in a later section (section 3.6).   

3.3.2 Data 
Table 3.3.1 provides an overview of the data sets used in the study.  Other than the data from the 
Atmospheric Radiation Measurement (ARM) sites, all data are used in the prediction of LSAT using 
the empirical statistical model.   

Table 3.3.1: Data sources used in this study. The uncertainty information provided for each data 
set is also shown; ‘full breakdown’ indicates that the information is partitioned into e uncertainties 
with different correlation properties. 

Variable Source Native spatial 
resolution 

Native 
temporal 
resolution 

Uncertainty 
information 

LSTday 
and 
LSTngt 

GlobTemperature MODIS 
Aqua (Wan, 2013; Wan 
2016) 

~ 1 km Daily Full breakdown, as 
derived in earlier 
EUSTACE work (see 
Merchant et al., 
2015 and 2017) 

FVC 
Fraction of 
vegetation 

Copernicus/Geoland-2 
global land service FCOVER 
(Baret et al., 2013; 
Camacho et al. 2013) 

1/112° 10-day Total only 

DEM 
Digital 
Elevation 
Model 

Shuttle Radar Topography 
Mission v1 (Farr & Kobrick, 
2000; Rodriguez et al., 
2005) 

 1 km (down-
sampled from 3 
arc second) 

N/A None 

Snow 
fraction 

NASA MODIS Aqua 
(Hall et al., 2006) 

0.05° Daily Quality and 
confidence (0-100) 
indices only 

Station 
Tmin & 
Tmax 

GHCN-D v3.22 (Menne et 
al., 2012) 

N/A Daily Quality flags only 

Station 
Tmin & 
Tmax 

Eustace Station Version 
R000771 (EUSTACE 
Deliverable D1.7) 

N/A Daily Quality flags only 

Land Cover 
type 

LC CCI (v1.6) 2005 epoch 
(Bontemps et al., 2012; 
Poulter et al., 2015) 

300m N/A Algorithmic 
confidence level  
(0-100) 

Station 
LST, LSAT, 
wind and 
cloud 

ARM (Mather and Voyles, 
2013; Stokes and Schwarz, 
1994) 

N/A 1-minute Quality flags only 
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3.3.3 Variability of the LST vs. LSAT relationship 
LST and LSAT are often well coupled, and the two temperatures can be close (within 1°C) under 
certain conditions, for instance in the presence of densely vegetated canopies such as forests, or 
when insolation is low or absent, for example under cloud, at night or at high latitudes (Good, 2016; 
Hachem et al., 2012; Mildrexler et al., 2011; Sohrabinia et al., 2014; Urban et al., 2013; Vancutsem 
et al., 2010).  However, LST and LSAT frequently differ by several degrees or more, with the 
largest differences occurring close to the peak of the diurnal cycle under cloud-free skies (Duda 
and Minnis, 2000; Edwards et al., 2011; Gallo et al., 2011; Good, 2015; Jin et al., 1997; Jin & 
Dickinson, 2010).  Maximum LST has been found to be as much as 20 degrees above the 
corresponding maximum LSAT in extreme cases (Mildrexler et al., 2011). 

Figure 3.3.1 (reproduced from Good, 2016) shows examples of the diurnal temperature 
evolution over a 24 hour period from six deployments of the Atmospheric Radiation 
Measurement (ARM) programme (Stokes and Schwartz, 1994; Mather and Voyles, 2013). Figure 
3.3.1a, showing data from the Niamey site on a virtually cloud-free day, is an example of what 
is often considered to be the classic diurnal cycle of LST and LSAT: the two temperatures are 
very close at night, while LST is warmer than LSAT during the day with maximum LST 
(LSTmax) occurring before Tmax.  This relative temperature behaviour is well known and is 
similar to examples presented in other studies (Edwards et al., 2011; Jin et al., 1997; Jin and 
Mullins, 2014).  However, most diurnal cycles do not exhibit this “classic” behaviour owing to 
the influence of cloud, wind speed and changes in local meteorology.  The effects of these 
factors on the LST-LSAT relationship are clear in the other examples shown in Figure 3.3.1.  
In general, the presence of cloud and/or increased wind during the day reduces LST and 
aligns it more closely with LSAT. 

Figure 3.3.2 shows a time series of daily MODIS LST minus GHCN-D daily maximum (Tmax) 
and minimum (Tmin) air temperature over Europe during 2010.  The local observation time for 
the MODIS LST data is nominally 1:30 am/pm.  Differences are shown for LSTday-Tmax and 
LSTngt-Tmin, partitioned into surfaces where the vegetation fraction is ≤25% (sparse), 25-
75% (moderately vegetated) and ≥75% (fully vegetated). It is notable that the LSTngt-Tmin 
difference is smaller in magnitude and the relationship more stable in time than the LSTday-Tmax 
time series.  LSTngt tends to be slightly warmer than Tmin.  This is expected because LSTngt is 
observed at ~ 01:30 local solar time and Tmin, usually occurs around sunrise (Good, 2016).  The 
closeness and stability of the LSTday-Tmax relationship is greatest during winter months, whereas 
the largest differences and greatest instability occur during the summer. Vegetation clearly has a 
strong influence on the LST-LSAT relationship, with smaller-magnitude and more stable 
differences in the presence of vegetated surfaces.  In the presence of fully-vegetated surfaces, 
there is little difference between the median LSTngt and Tmin.  These observations indicate that 
both vegetation and time of year (or solar zenith angle) have a strong influence on the LST-LST 
relationship, particularly between LSTday and Tmax. 

Over snow-covered surfaces, the LST-LSAT difference tends to be closer to zero.  Figure 3.3.3 
(reproduced from Good, 2016) shows the variation in LST-LSAT with satellite-estimated snow 
fraction, also from MODIS Aqua (Hall et al., 2006).  For LSTmin-Tmin there is no clear relationship 
with snow cover. However, for LSTmax-Tmax, the difference can be large without snow cover, but 
tends towards zero even with small snow cover fraction. 
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Figure 3.3.1: Examples of diurnal evolutions of LST (°C, red) and LSAT (°C, orange), wind 
speed (m/s, green) and % opaque cloud (blue) measured in situ at the ARM sites at (a) 
Niamey (NIM) on 2 September 2006, (b) Niamey on 9 June 2006, (c) Cape Cod, 
Massachusetts (PVC) on 21 June 2013, (d) Oklahoma (SGP) on 26 March 2014, (e) Graciosa 
Island, Azores (ENA) on 25 June 2014 and (f) Oklahoma (SGP) on 30 November 2014. 
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Figure 3.3.2: Time series of LST minus LSAT (T2m) distributions (°C) for differing fraction of vegetation (FVC) within the satellite pixel 
during 2011 over Europe (34 to 75°N, -12 to 40 °E). The 50th (black), 25-75% centile (dark grey) and 5-95th centile (light grey) ranges are 
shown on the plot.  
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Figure 3.3.3: Relationship between LST-LSAT (°C) and snow cover (% snow in satellite 
pixel) for (a) minimum and (b) maximum temperatures for Olitok Point (OLI) during 2014.  

3.3.4 Relationship model  
The method for estimating LSAT from satellite data is based on the approach detailed in 
Good (2015) and references therein, which was developed for data from the Spinning 

Enhanced Visible and Infrared Imager (SEVIRI) over Europe.  The model is essentially 

a multiple linear regression used to predict daily Tmin and Tmax from daily satellite LST 
and other predictors, such as vegetation.   

The generalised equations for predicting Tmin and Tmax are: 

Tmax=α0+ α1.LSTday + α2.LSTngt+ α3.FVC + α4.SZAnoon+ α5.Snow +εTmax.            (Eq. 3.3.1) 

Tmin=β0+ β1.LSTday + β2.LSTngt+ β3.FVC + β4.SZAnoon+ β5.Snow +εTmin          (Eq. 3.3.2) 

Where α and β are the multiple linear regression coefficients.  LSTday and LSTngt are 

the retrieved daytime and night-time satellite LSTs (in °C), respectively. FVC is the 
fractional vegetation cover (0-1), Snow is the % snow cover and SZAnoon is the solar 

zenith angle at local solar noon (in degrees).  ε is the error on the model.  All quantities 
correspond to the mean value for each grid cell at the specified spatial resolution.  The 
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regression coefficients are given in Table 3.3.2, together with the valid range of data for 

each predictor.  Model error terms are discussed further in Section 3.3.5. 

A global approach is adopted, whereby one set of coefficients is used for every spatial 

point at all times.  Three model variants are used, which require different sets of 
predictors.  The primary model for both temperature predictions, Tmin1 and Tmax1, 

requires both LSTday and LSTngt in each case.  The secondary and tertiary models - 

Tmin2, Tmax2, Tmin3 and Tmax3 – require only one LST to be present, thereby enabling 
greater spatial coverage of the LSAT predictions because LSTday and/or LSTngt may be 

unavailable on a particular day, e.g. due to cloud or failed observations.  The primary 

models are used wherever possible as these are the most accurate.  The secondary or 
tertiary models are used for other locations; it should be noted that these are mutually 

exclusive, so are not applied in any preferential order.  The global fields of Tmin and 
Tmax are therefore a ‘best guess’ field and may include data from all three models.  

Table 3.3.2: Model regression coefficients and the valid data range for each predictor, 
determined physically (FVC, Snow, SZA) or from the input data (LST). ‘StDev’ gives the 
standard deviation of the model residuals (i.e. predicted satellite-derived LSAT minus 
observed station LSAT). 
Model Offset 

(°C) 
α0 /β0 

LSTday 
α1 / β1 

LSTngt 
α2 / β2 

FVC 
α3 / β3 

SZAnoon 
α5 / β5 

Snow 
α6 / β6 

StDev 
(°C) 

Tmin1 -1.513 0.032 0.835 0.765 0.000 0.000 2.84 
Tmax1 7.092 0.388 0.432 1.516 0.000 -0.011 3.02 
Tmin2 0.184 0.000 0.850 0.595 -0.021 0.000 2.84 
Tmax2 5.042 0.594 0.000 2.956 0.000 -0.022 3.65 
Tmin3 -5.734 0.436 0.000 3.601 0.000 0.000 4.88 
Tmax3 21.260 0.000 0.723 0.00000 -0.130 -0.055 3.88 
Rangemin - -80.0 °C -80.0°C 0.0 0.0° 0 - 
Rangemax - 65.0 °C 40.0°C 1.0 90.0° 100 - 

 

3.3.4.1 Choice of predictors 
The choice of predictors is based on current knowledge of the parameters that influence the 
relationship between LST and LSAT (section 3.3.3; Good, 2016; Hachem et al., 2010; Jin et 

al., 1997; Mildrexler et al., 2011; Urban et al., 2013), and other studies published in the 
literature that have estimated LSAT using satellite data (Benali et al., 2012; Chen et al., 

2014; Good, 2015; Kilibarda et al., 2014; Oyler et al., 2015; Parmentier et al., 2015). 
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The correlation between all predictor variables tested in the study is shown in Table 3.3.3.  

Both Tmin and Tmax are well correlated with both LSTday and LSTngt (r≥|0.72|).  

Unsurprisingly, the temperature variables are also quite well correlated with SZAnoon 
(r≥|0.62|).  The correlation between both FVC and DEM and temperature is weak (r<|0.22|), 

while snow is moderately well correlated with temperature (r~0.33).   

Table 3.3.3: Correlation between variables tested in model training.  All correlation 
coefficients have p values <0.01.  The number of data pairs in each case is 98,773. 

Model Tmin Tmax LSTday LSTngt FVC DEM SZAnoon Snow  
Tmin 1.00 0.82 0.72 0.92 0.17 -0.22 -0.62 -0.30 
Tmax 0.82 1.00 0.89 0.86 0.12 -0.10 -0.70 -0.35 
LSTday 0.72 0.89 1.00 0.77 -0.01 0.03 -0.78 -0.35 
LSTngt 0.92 0.86 0.77 1.00 0.16 -0.21 -0.64 -0.31 
FVC 0.17 0.12 -0.01 0.16 1.00 -0.13 -0.13 -0.05 
DEM -0.22 -0.10 0.03 -0.21 -0.13 1.00 -0.13 0.06 
SZAnoon -0.62 -0.70 -0.78 -0.64 -0.13 -0.13 1.00 0.26 
Snow -0.30 -0.35 -0.35 -0.31 -0.05 0.06 0.26 1.00 

 

The impact of each predictor in the model has been assessed by analysing the model 

residuals (predicted minus actual) through an incremental addition of parameters.  The 
impact on model residuals partitioned by surface type, e.g. FVC ≥0.7, 0.7>FVC>0.3, and 

FVC ≤0.3 is also examined.  This is an important step in assessing the impact of predictors 
since the stations used for training may not accurately represent the proportions of each 

surface regime in the real world so the impact may not be apparent in the overall residual 

statistics.   For example, the impact of including FVC in the model to predict Tmax is 
negligible when considering the full set of residuals, but when considering different FVC 

categories the impact is notable.  In this case, the addition of FVC for those space-time 

locations with high FVC (≥0.7), a reduction in the mean absolute difference (MAD) from 1.1 
°C to 0.5 °C is observed, while for those with mid (0.7>FVC>0.3) and low FVC (≤0.3) the 

reduction in MAD is from 0.4 °C to 0.3 °C, and 0.7 °C to 0.3 °C, respectively.  

Using both LSTday and LSTngt as predictors in the Tmax model reduces the standard 

deviation of the residuals by >0.5 °C, compared to using just LSTday.  This is likely to be 
because LSTday-LSTngt difference is sensitive to the thermal properties of the land surface, 

and synoptic conditions, and thus the LSAT diurnal temperature range, therefore improving 
the ability of the model to predict Tmax.  However, as LSTngt and Tmin are already well 

coupled, the impact of using LSTday in the Tmin model is very small, resulting in a reduction 
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in standard deviation of <0.1 °C.  However, magnitude of the LSTday term can be a few 

tenths of a °C.  Additionally, LSTngt is more susceptible to cloud contamination than LSTday, 

where visible channel data are available, so including LSTday acts as a stabilising factor on 
the estimation of LSAT. 

3.3.4.2 Model training 
Model training is performed using satellite data aggregated to 0.05 °lat/long, which is at a 
finer spatial resolution that the EUSTACE target grid of 0.25 °lat/long.  We chose to train the 

model at the higher resolution because the area-averaged LST vs point LSAT relationship 
peaks at around 5 km spatial resolution [Sohrabinia et al., 2014], and degrades with 

decreasing spatial resolution.  Moreover, more satellite-station matchups are obtained using 

a higher resolution, providing a larger data pool on which to perform the model training.   

The model is trained using station observations from EUSTACE Station data set.  This 

global data set includes around 20,000 stations that observe Tmin and/or Tmax over the 
MODIS era (from the year 2000 onwards).  A sub-set of 2206 stations is used here to 

generate the coefficients for estimating satellite-derived LSAT, leaving the remaining stations 
for potential use within the EUSTACE global surface air temperature analysis or for 

validation.  Stations are preferentially chosen for model training if: the station land cover type 

matches the dominant land cover type of the grid cell containing the station; it has the 
greatest number of years of data available between 2000 and 2016 from available station 

choices; the elevation of the station matches the mean elevation of the grid cell.  To 
minimise well-observed regions dominating the model training, some station thinning is also 

performed using these same criteria.  

The LST data are retrieved from observations made at infrared wavelengths and are 

therefore only available when conditions between the sensor and the surface are cloud free.  

The GlobTemperature LST products include quality information that indicates when 
retrievals are cloud-contaminated.  However, cloud detection is a non-trivial problem and 

cloud is sometimes ‘missed’, which can lead to large errors in the retrieved LSTs.  This error 
is nearly always a cold bias, such that the cloud-contaminated LST retrievals are cold 

relative to the true LST by up to several °C.  Cloud contamination is often most prevalent at 

night, where the absence of data from visible channels results in more challenging 
conditions for detecting cloud successfully.  The cloud mask provided with the 

GlobTemperature LST data is binary rather than probabilistic, indicating either ‘cloud’ or ‘no 
cloud’.  The uncertainties estimated for the retrieved LSTs do not include any allowance for 

possible cloud effects.   
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In order to minimise the impact of cloud-contaminated LSTs on the regression coefficients, 

additional screening is performed by sub-sampling the data set to include only the day with 

the maximum LST over successive non-overlapping 10-day windows.  Data (both satellite 
and in situ) corresponding to the other nine days within the window are excluded from the 

analysis.  As cloud causes a cold-biased LST, this 10-day maximum LST is the least likely 
observation to be contaminated by cloud.  Since the data record is long (> 10 years) and the 

coverage is global, this will not result in a warm biased training data set because colder 

conditions are still captured at higher latitudes and during cooler seasons at all latitudes.  
This process increases the correlation coefficients between predictors and the multiple linear 

regression coefficient, indicating this has a positive effect on the analysis.  Grid cells (0.05 
°lat/long) containing fewer than 50% cloud-free 1km LST observations or a sampling 

uncertainty greater than 5 °C are also excluded from the pool of data used for regression in 

order to minimise cloud contamination on the data used in the relationship building.  The 
sampling uncertainty represents the uncertainty within the grid cell arising from incomplete 

sampling of LST retrievals within the grid cell; it is a function of both the cell variance and the 

number of available observations.  Sampling uncertainty is often found to be inflated where 
observational coverage is poor, and/or where cloud contamination is present in part of the 

cell, owing to the presence of cold-biased LSTs.  

3.3.4.3 Model implementation 
While the model coefficients are derived using data at 0.05°, the model is implemented at 

0.25° to match the EUSTACE target grid.  The implementation of the model is 
straightforward.  For each 0.25° cell, the predictor variables are aggregated and 

uncertainties are propagated (where possible).  The coefficients in Table 3.3.2 are then 

applied to each predictor variable to give an estimate of Tmin and Tmax for that cell, 
according to Equations 3.3.1 and 3.3.2.  The primary model – Model 1 – is implemented 

wherever possible, followed by Model 2 and Model 3 (which are mutually exclusive).  LSAT 
is not estimated for grid cells where the percentage of cloud-free 1 km pixel LST 

observations within that grid cell is less than 20%, or where the sampling uncertainty is 

greater than 3 °C.  This is to reduce the amount of residual cloud contamination in the 
satellite LSAT estimates, as discussed above.  The choice of these thresholds is a 

compromise between successfully rejecting poor-quality data while still preserving good data 
coverage.  LSAT is also not estimated for cells classified as land or sea ice; near-surface air 

temperatures for these cells are provided in the ice air temperature products described in 

Section 3.4.  Figures 3.3.4 and 3.3.5 show an example of the fields for a single calendar day. 
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Figure 3.3.4: Maps showing (a) satellite-retrieved LSTngt,(°C) (b) satellite-predicted 
Tmin (°C), (c) satellite-retrieved LSTday, (°C) and (d) satellite-predicted Tmax (°C) on 1 
July 2010.  Grey areas correspond to missing data, e.g. due to cloud, ice or ocean. 
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Figure 3.3.5: Maps showing the model number used for satellite-predicted (a) Tmin and 
(b) Tmax on 1 July 2010.  Grey areas correspond to missing data, e.g. cloud, ice, or 
ocean.  

The temporal coverage of the satellite-derived LSAT product exceeds 50 % for most of the 

globe (not shown).  As expected, temporal coverage is highest in the clear-sky arid regions, 
for example North Africa, and lowest in the tropics, where cloud is most prevalent.   

3.3.5 Modelling uncertainties 
Uncertainties are estimated for each predictor variable based on the uncertainty information 
available for each native data set used (Table 3.3.1).  For the LST data – which is the only 

predictor to have complete characterisation of uncertainties - each uncertainty component 
(random, locally correlated, systematic) is propagated through the gridding process 

according to EUSTACE Deliverable 1.2 (Merchant et al., 2015).  For the FVC data set, the 

mean total uncertainty within a particular grid cell is used as an estimate of the locally 
correlated uncertainty for that grid cell, while the difference between the maximum and the 

mean uncertainties within each cell is used as an estimate of the random uncertainty.  The 
quoted precision of the FVC estimates, 0.004, is assumed to be the systematic uncertainty 

on a pixel-by-pixel basis.  At present, no uncertainty information has been estimated for the 

snow estimates.  As the dominant contribution to the satellite-derived LSAT estimates is 
from the LST data, omitting the uncertainty contribution from the snow data should have only 

a very small impact. 
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Uncertainty estimates for the satellite-derived LSAT data are estimated so that for a 

particular grid cell at a particular point in time, the random uncertainty component is given 

by: 

 Tmaxrandom= (α1
2.LSTday_random

2 + α2
2.LSTngt_random

2+ α3
2.FVCrandom

2)½ (Eq. 3.3.3) 

 Tminrandom= (β1
2.LSTday_random

2 + β2
2.LSTngt_random

2+ β3
2.FVCrandom

2)½  (Eq. 3.3.4) 

Where LSTday_random, LSTday_random and FVCrandom are the random uncertainty components 

from the input data sets for the same grid cell at the same point in time for LSTday, 

LSTnight and FVC, respectively.  The coefficients α and β are the model coefficients from 
Table 3.3.2; so for models that do not use a particular predictor, that term in equations 

3.3.3 and 3.3.4 will be zero.  Similarly, the locally correlated uncertainty components are 
given by: 

Tmaxatm= (α1
2.LSTday_local_atm

2 + α2
2.LSTngt_loca_atml

2+ σTmax
2)½             (Eq. 3.3.5) 

Tminatm= (β1
2.LSTday_local_atm

2 + β2
2.LSTngt_local_atm

2+ σTmin
2)½               (Eq. 3.3.6) 

Tmaxsurf= (α1
2.LSTday_local_surf

2 + α2
2.LSTngt_local_surf

2+ α3
2.FVClocal

2)½    (Eq. 3.3.7) 

Tminlocal= (β1
2.LSTday_local_surf

2 + β2
2.LSTngt_local_surf

2+ β3
2.FVClocal

2)½    (Eq. 3.3.8) 

Where LSTday_local_atm, LSTngt_local_atm, LSTday_local_surf, LSTngt_local_surf and FVClocal, are the 
locally correlated uncertainty components from the input data sets for the same grid cell 

at the same point in time for LSTday, LSTnight and FVC, respectively.  (Note: The 

GlobTemperature MODIS LST products provide separate uncertainty estimates due to 
atmospheric (atm) and surface (surf) effects on the LST retrievals, and it is these 

separate components that are used here.)  The terms σTmin and σTmax represent the 
standard deviation of the residuals, i.e. the satellite-predicted Tmin/Tmax minus the 

station Tmin/Tmax, calculated during the model training process (‘StDev’ in Table 

3.3.2).  The grid-cell systematic uncertainties are assumed to be 0.1 °C, which is 
consistent with the systematic uncertainty estimated for the GlobTemperature LST data. 

3.3.6 Validation 
Formal evaluation of all EUSTACE products is being performed in WP3.  However, 
evaluation of the LSAT model performance is presented here using ~7000 EUSTACE 

stations not used in the model training (section 3.3.4.1).  The evaluation is performed 

for satellite-derived LSAT estimates at 0.05 ° latitude/longitude between July 2002 and 
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December 2016.  The satellite-derived LSAT data have been sub-sampled to reduce the 

effect of cloud, as previously described (section 3.3.4.3).  A summary of the global 

performance is shown in Table 3.3.4.  Figures 3.3.6 and 3.3.7 present a graphical illustration 
of the performance of Model 1. 

Table 3.3.4: Summary evaluation results for each LSAT model using  
~7000 stations not used in model training.  ‘Correlation’ indicates the correlation 
between all station-observed and satellite-predicted LSAT pairs, while ‘slope’ indicates 
the slope of a linear regression line fitted to pairs of satellite-derived air temperatures 
and independent station measurements.  The median and root-mean squared 
differences (RMSD) are also given. 

Model Correlation Median (°C) RSMD (°C) Slope 
Tmin1 0.93 -0.04 2.80 1.03 
Tmin2 0.93 -0.03 2.80 1.03 
Tmin3 0.76 0.10 4.89 1.07 
Tmax1 0.93 0.00 3.08 1.00 
Tmax2 0.89 -0.07 3.76 1.01 
Tmax3 0.88 0.06 3.89 0.99 
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Figure 3.3.6: Global Tmin evaluation results (~7000 stations) for Model 1.  In panels b-
d, the grey bars/filled circles represent results for night time satellite LST minus station 
Tmin; the black bars/filled circles correspond to satellite-estimated Tmin minus station 
Tmin.  Panel (a) shows validation station locations (filled black circles), (b) shows 
satellite minus station difference where the whiskers correspond to the 5th/95th centiles 
and the box shows the 25th/75th centiles with the median shown by the horizontal line 
within the box, (c) shows the satellite vs. station correlation coefficient and (d) shows 
the station vs. satellite linear slope (top) and the number of stations in category 
(bottom).  Results are presented for all stations (all), stations with high (FVC≥0.7), mid 
(0.3<FVC<0.7) and low (FVC≤0.3) FVC, stations with high (DEM>2000), mid 
(1000≤DEM≤2000) and low (DEM<1000) elevation, stations with high (SZA≥75°), mid 
(20≤SZA≤75) and low (SZA≤20°) SZA, and stations with high (snow≥75°), mid 
(20≤snow≤75) and low (snow≤20°) snow %. 
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Figure 3.3.7: As for Figure 3.3.6 but for Model 1 Tmax evaluation. Grey bars/circles 
denote results using LSTday. 

The summary results presented in Table 3.3.4 are encouraging and in line with the 

results of previous studies (Benali et al., 2012; Chen et al., 2014; Good, 2015; Janatian et 

al., 2016; Kilibarda et al., 2014; Oyler et al., 2015; Parmentier et al., 2015).  The 
performance of the primary models (Tmin1 and Tmax1) is generally superior to the 

secondary and tertiary models, although it is notable that there is no real difference in the 
performance of Tmin1 (LSTday and LSTngt) and Tmin2 (LSTngt only).  However as noted 

earlier, using Tmin1 may be preferable because this uses LSTday, which is less susceptible 

to cloud contamination than LSTngt.  Examining the results presented in Figures 3.3.6 and 
3.3.7 indicates that the LSAT models provide better estimates of LSAT than using LST as a 

proxy for LSAT.   The results also suggest that model performance varies somewhat with 

surface regime.  For example, Tmax estimates for matchups with a high solar zenith angle 
(e.g. high latitude locations) do not perform well, which is likely to be due to the very low 

number of stations in this regime.  It should be noted that Section 3.4 discusses relationships 
specifically for ice-covered surfaces and these will be used in EUSTACE products here.   
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3.3.7 Conclusions and outlook 
A computationally inexpensive, simple approach for estimating global LSAT from satellite 

data has been proposed for the EUSTACE project.  The method predicts Tmin and Tmax 

using linear models that depend on LSTday, LSTngt, FVC, and SZAnoon.  Separate models are 
proposed for Tmin and Tmax, with three model variants in each case that rely on different 

combinations of predictors in order to maximise spatial coverage.  The method can be 

applied at locations (and at any spatial resolution) with at least one cloud-free LST 
observation on a given day.  An uncertainty model is proposed, whereby four uncertainty 

components are provided with each satellite LSAT estimate: random, locally correlated 
(atmospheric), locally correlated (surface) and systematic.  These can be combined in 

quadrature to provide a total uncertainty.  

The accuracy of the LSAT estimates has been independently assessed at around 7,000 

stations.  The Tmin predictions are found to be more accurate than those of Tmax. The 
median satellite-station difference ranges between -0.07 and 0.10 °C, with a RMSD of 

between 2.80 and 4.89 °C, depending on the model used.  The primary models – which use 

both LSTday and LSTngt - achieve a median difference and RMSD of -0.04 and 2.80 °C, 
respectively for Tmin and 0.00 and 3.08 °C for Tmax.  

Spatial coverage of the product could be improved in future by using LST retrievals from 
more than one sensor, for example MODIS Terra.  A new set of model coefficients would 

need to be generated for each new sensor used, as the relationship between LST and 
Tmin/Tmax will vary with sensor overpass time. 
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3.4 Relationships over ice  

3.4.1 Summary of ice relationships 
The Polar Regions have a sparse in situ observational network, due to the extreme 

conditions and the low population. The potential for using satellite observations of ice 
surface temperature (IST) to estimate the near surface air temperatures (IAT) is therefore 

large in these regions. IST and IAT are often well coupled, and the two temperatures can be 

close (within 1°C) during certain conditions, e.g. when clouds are present or during strong 
winds. However, IST and IAT frequently differ by several degrees or more, with the largest 

differences occurring during night and under cloud-free skies.  

In this study, we estimate daily IAT on the basis of Earth Observation satellite retrievals of 

skin temperatures, using a linear regression model. In the optimal regression model, IAT is 
predicted from daily satellite IST combined with a seasonal variation. The new surface air 

temperature data record has been validated against independent, in situ measured near 

surface air temperatures. Moreover, we provide a direct comparison of the air temperature 
data record against the existing near surface air temperature reanalysis product, ERA-

Interim. 

3.4.2 Data 

3.4.2.1 In situ data 
In situ observations have been collected from various sources and campaigns covering ice 

and snow surfaces to augment an existing DMI database. The DMI database includes 
quality controlled and formatted observations from 2,910 stations/buoys/ships with 

temperature observations covering ice and snow surfaces (Figure 3.4.1). Here, we use a 
subset of temperature observations from the DMI database covering the period 2000-2009. 

Table 3.4.1 shows a summary of the 329 sites/buoys/ships used here. For the Northern 
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Hemisphere land ice we use data from PROMICE1, ARM2 data from Alaska, and GC-Net3 

data. The northern sea ice is covered mainly by data obtained from the ECMWF operational 

data stream, providing approx. 200 unique data series from drifting buoys used in this study. 
A few data series included here provide both surface and air temperatures across the 

Northern Hemisphere sea ice. These include the Sea Ice Temperature and Radiation Data 
set provided by DMI, the SHEBA4 data and MET Norway IST temperature and radiative flux 

measurements5. Fewer in situ observations are available for the Southern Hemisphere sea 

ice and a total of 13 drifting buoys are used from the ECMWF operational data stream. The 
Southern Hemisphere land ice is covered by NCEI6, AMRC7 and one data set from 

Australian Antarctic Data Centre (AADC) automatic weather stations (AWS). 

Figure 3.4.1: Total number of observations in the period 1980-2016. The portion of 
observations which are of near surface air temperature is shown in blue and the portion of 
observations which are of ice surface temperature is shown in yellow. 

                                            
1 Programme for Monitoring of the Greenland Ice Sheet by the Geological Survey of Denmark and 
Greenland (GEUS), http://www.promice.dk/home.html 
2 Atmospheric Radiation Measurement Program, http://www.arm.gov/sites/nsa 
3 Greenland Climate Network by Cooperative Institute for Research in Environmental Sciences 
(CIRES), http://cires1.colorado.edu/steffen/gcnet/ 
4 Surface Heat Budget of the Arctic from the Canadian DesGroseilliers icebreaker 
http://www.eol.ucar.edu/projects/sheba 
5 https://sabvabaa.nersc.no/node/395 
6 National Centers for Environmental Information, formerly the National Climatic Data Center (NCDC), 
ftp://sidads.colorado.edu/pub/DATASETS/surface_obs/ 
7 Antarctic Meteorological Research Center, https://amrc.ssec.wisc.edu/aws/ 
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Uncertainties of the temperatures measured in situ have been estimated based on 

information on the observational platform and by comparison with the satellite data. A fixed 

uncertainty estimate has been assigned to data from each data provider and surface type, 
ranging from 0.5°C to 2.2°C (Table 3.4.1). 

Table 3.4.1: Overview of in situ data for 2000-2009 in the DMI database used and their 
assigned uncertainties. 
 No. of 

sites, 
buoys or 
cruises 

No. of daily 
observations 

Spatial 
Coverage 

Surface Type Observation 
Type 

Parameters Assigned 
instrument 
uncertainty 

(°C) 
AADC 1 818 SH Land ice AWS T2m 0.5 

ACSYS 7 280 NH Sea ice Buoy T2m 1.0 

AMRC 25 31,912 SH Land ice AWS T2m, Tskin 0.5 

ARM 2 2,846 NH Land snow AWS T2m, Tskin 1.0 

CRREL 10 1,031 NH Sea ice Buoy T2m 0.5 

DAMOCLES 25 2,160 NH Sea ice Buoy T2m 1.0 

ECMWF 209 27,235 NH, 

840 SH 

196 NH,  

13 SH 

Sea ice Buoy T2m, Tskin 1.5 

FRAMZY 11 251 NH Sea ice Buoy T2m 1.0 

GC-NET 15 29,133 NH Land ice AWS T2m, Tskin 2.2 

NCDC 14 3,732 SH Land ice AWS T2m, Tskin 1.5 

Polarstern 2 189 NH,   

210 SH 

1 NH,  

1 SH 

Sea ice Ship T2m 0.5 

PROMICE 8 2,685 NH Land ice AWS T2m, Tskin 0.5 

 

PROMICE has proven very useful in this analysis and was also used earlier within 

EUSTACE as a reference data set for validation of satellite IST, fitting different regression 
models, and validation of the final IAT data product. PROMICE delivers in situ observations 

from a number of AWSs along the margin of the Greenland Ice Sheet. Only high-altitude 

stations have been used in this study in order to ensure a permanent snow/ice covered 
surface. PROMICE IST has been calculated from the up-welling longwave radiation 

assuming blackbody radiation properties (Ahlstrøm et al. 2008).  

3.4.2.2 Satellite data 
The satellite data used in this study are from the Arctic and Antarctic Ice Surface 

Temperatures from thermal Infrared satellite sensors (AASTI; Dybkjær et al., 2014) data set, 
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covering high latitude seas, sea ice, and ice cap surface temperatures based on satellite 

infrared measurements (Karlsson et al., 2013). The data set is based on one of the longest 

existing satellite records from the Advanced Very High Resolution Radiometer (AVHRR) 
instruments aboard a long series of NOAA satellites. The first version of the AASTI product, 

used here, is available from 2000 to 2009 in approximately 5 km spatial resolution. The 
different AVHRR satellites have been orbiting 14 times per day, providing approximately bi-

hourly coverage of the Polar Regions. An increasing number of satellites has been in orbit 

from 2000 to 2009 (Figure 3.4.2). 

 

Figure 3.4.2: NOAA and Metop satellites carrying the AVHRR sensor, used for AASTI 
version 1. 

The level 2 satellite observations were aggregated into daily level 3 averages of ice surface 
temperatures on a fixed 0.25 by 0.25 degrees grid, which is common for all surfaces. 

EUSTACE is developing products for days defined by local solar time. The data in the 
aggregated files thus contains observations from 00 to 24 local solar time. The main 

aggregated surface variables are the daily average, minimum and maximum surface 

temperatures, but 3-hourly averages of surface temperatures and the number of 
observations were also calculated for the eight intervals during each day. These 3-hourly 

averages were used for estimating the satellite sampling throughout the day and to gain 
confidence in the daily cycle estimates. In the aggregation, all satellite observations with a 

quality flag of 4 or 5 were used. The aggregated surface skin data set is available to users 

upon request. Figures 3.4.3 and 3.4.4 show the mean number of observations per day in 
each of the eight time intervals given in local time for the Northern and Southern 

Hemisphere, respectively. The variation in the coverage throughout the day is a combined 
effect of the satellite overpasses and the availability of cloud-free conditions during the day. 
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The cloud mask in the PROMICE data set displays a minimum in the cloud coverage around 

noon, local time (not shown), which is consistent with Figure 3.4.3.   

 

 

Figure 3.4.3:  Mean number of observations per day in each of the eight local solar time 
intervals. Northern Hemisphere averages 2000-2009. 
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Figure 3.4.4: Mean number of observations per day in each of the eight local solar time 
intervals. Southern Hemisphere averages 2000-2009. 

In order to best resolve the diurnal cycle with satellite information without losing too many 

observations we require data during both night (6pm-6am) and day (6am-6pm) in order to 
calculate the daily mean temperature (Tmean). Here, Tmean is calculated by averaging all 

available observations during the day. To calculate the daily minimum (Tmin) we require 

observations in at least one of the night bins and for daily maximum (Tmax) we require 
observations in at least one of the day bins. A few more criteria have been set up in order to 

limit temporal sampling errors, effects of undetected clouds and outliers:  

• Tmean, Tmin and Tmax are not allowed to exceed +5°C, to avoid clear melting 

conditions and obviously wrong measurements. 

• If the standard deviation of satellite IST during one day exceeds 7.07°C, 

corresponding to a sinusoidal daily cycle with a difference between day and night of 

20°C, no Tmean, Tmin or Tmax are calculated.  

• If the difference between Tmean and the average of all available averaged bin 

temperatures exceeds 10°C, Tmean is discarded. 
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• If Tmin is more than 20°C colder than the night bins average, Tmin is left out, 

because this indicates cloud contamination of the Tmin value. 

• If Tmax is more than 20°C warmer than the day bins average, Tmax is left out, 
because this indicates an outlier, possibly from an open water patch in sea ice.   

• If Tmean/Tmax/Tmin is more than 10°C colder than the corresponding average of up 

to 24 neighbouring cells with same surface type, Tmean/Tmin/Tmax is left out. 

3.4.2.3 Validation of satellite data 
AASTI v.1 Level 3 data has been validated against in situ observations from PROMICE and 

ARM stations covering land ice in the Northern Hemisphere. Table 3.4.2 shows the results of 
AASTI v.1 Level 3 data (ISTSAT) validated against in situ ice surface temperature 

measurements (ISTInSitu) and near surface air temperature measurements (IATInSitu), 

respectively. In general, ISTSAT correlates better with the in situ measured air temperature 
than with the in situ measured ice surface temperature. Moreover, the ISTSAT-IATInSitu 

difference shows a smaller standard deviation than ISTSAT-ISTInSitu. However, as expected 
the bias and RMS are larger for ISTSAT-IATInSitu difference for the ten weather stations 

included in this analysis.  

Table 3.4.2: Validation of AASTI v.1 Level 3 IST against in situ IST and IAT observations. 

3.4.3 Variability of the IST vs air temperature relationships 

3.4.3.1 Variability from in situ 
Here we perform an analysis of the IST and IAT variability and the factors controlling the 
surface and air temperature variations in ice and snow covered regions. The IST-IAT 

  ISTsat – ISTinsitu ISTsat - IATinsitu 
Station N corr Bias 

(°C) 
std 
(°C) 

RMS 
(°C) 

corr Bias 
(°C) 

std 
(°C) 

RMS 
(°C) 

ARM_Atq 1235 93.8 -2.47 3.69 4.44 93.7 -3.17 3.69 4.87 
ARM_Bar 1594 94.1 -0.73 4.30 4.36 94.6 -1.14 4.02 3.86 

PROMICE KAN-M 422 93.9 -3.65 3.37 4.96 94.6 -4.56 3.14 5.53 
PROMICE KAN-U 239 93.9 -1.75 3.32 3.75 94.4 -3.39 3.17 4.64 
PROMICE KPC-U 488 97.6 -1.31 2.62 2.92 98.2 -3.20 2.27 3.92 
PROMICE NUK-U 296 77.7 -4.09 5.00 6.45 84.7 -7.19 4.01 8.23 
PROMICE QAS-U 407 83.9 -1.65 4.20 4.51 86.3 -3.70 3.75 5.27 
PROMICE SCO-U 403 91.5 -4.60 4.25 6.26 93.7 -7.55 3.75 8.43 
PROMICE TAS-U 386 67.5 -1.03 5.43 5.52 79.5 -3.61 4.39 5.68 
PROMICE UPE-U 125 88.2 -3.13 3.88 4.97 90.0 -5.49 3.50 6.50 

All data 5595 92.9 -2.03 4.24 4.70 93.2 -3.36 4.12 5.32 
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relationship has been studied using in situ measurements from ten PROMICE AWSs 

covering the margin of the Greenland Ice Sheet.  One example, for the north-western station 

in Upernavik, is shown in Figure 3.4.5. Here, three different sky conditions have been 
compared in terms of IAT-IST differences as a function of local time and season. In the case 

of all-sky conditions the winter diurnal cycles display very little variability, as expected from 
the lack of insolation. The vertical stratification is weakest in spring and fall around noon and 

early afternoon, when the sun is out and can warm the surface. At these times, IST may 

even exceed IAT slightly. During night, the surface is often colder than the atmosphere 
resulting in a strong vertical stratification.  

The difference in downwelling longwave radiation between clear-sky and overcast conditions 
can result in changes in the differences between IAT and IST of up to around 5°C (Figure 

3.4.5).  

 

Figure 3.4.5:  Observed IAT (T2m) minus IST (Tskin) differences (°C) at the upper station in 
Upernavik in cases of clear-sky, all-sky, and overcast conditions. The black lines indicate 
times of sun rise and sun set. 

During clear skies, large differences (>3°C) between IAT and IST are prevalent most of the 
time. Overcast conditions lead to a weaker stratification and, in some cases, a reversal with 

very limited diurnal variability. All PROMICE stations included in this study show that the 
strongest stratification occurs during clear-sky conditions. This must be taken into account 

when deriving IAT from IST, as infrared satellite observations are only available during clear 

skies. 
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Figure 3.4.6 shows the impact of wind on the IAT-IST differences for the upper PROMICE 

station in Upernavik. For all stations, the strongest vertical stratification occurs at wind 

speeds of the order of 5 m/s. Higher wind speeds force turbulent mixing and a weak vertical 
temperature gradient between IST and IAT. At wind speeds weaker than 5 m/s the vertical 

stratification is vanishing and may be reversed. In general, though, the variance in IAT-IST 
difference decreases with increasing wind speed. 

 

Figure 3.4.6:  Scatterplot showing the observed IAT (T2m) minus IST (Tskin) differences 
(°C) at the upper station in Upernavik as a function of wind and IST. The black lines display 
the mean temperature difference and the corresponding error bars. The colours represent 
the IST.    

3.4.3.2 Variability from Satellite 
The satellite-derived IST shows a significant seasonal difference in daily variability, with 

largest standard deviations during summer in East Antarctica and during spring for Southern 
Hemisphere sea ice (Figure 3.4.7). The freeze-up of sea ice also causes higher variability 

along the sea ice margin. 
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Figure 3.4.7: Standard deviations (°C) of daily satellite surface temperature observations by 
month for the Northern (top) and Southern (bottom) Hemisphere. Averages over years 2000-
2009.  

3.4.4 Relationship model and application to satellite data 
A regression-based approach has been used to estimate daily Tmean, Tmin and Tmax at 

the grid scale using AASTI satellite data, providing spatially-detailed observations for areas 
unobserved by in situ stations. 

3.4.4.1 Matchup 
The AASTI data have been matched with in situ data for each day by requiring a distance to 
nearest in situ station of less than 0.5 degree (approx. 55km in latitude). Separate regression 

models are produced for land and sea ice in both hemispheres. The match-up stations have 
been divided into two sub-sets for each domain; one set used to generate regression 

coefficients and another set used to validate the regression model (Figure 3.4.8). 

 

Figure 3.4.8: Positions of match-ups on sea ice and land ice in the Northern Hemisphere (a) 
and Southern Hemisphere (b) (red: analysis/training, blue: validation). 

b

. 
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3.4.4.2 Regression model 
The regression model is based on multiple linear regression analysis using least squares 

(Menke 1989). As explaining factors, latitude, downward shortwave radiation not considering 

clouds (theoretical), seasonal cycle, and wind (ERA-Interim reanalysis) were tested. These 
factors were selected for testing based on current knowledge from the literature and an 

analysis of parameters that influence the relationship between IST and IAT at PROMICE 

stations and field experiments in Qaanaaq, limited by the available data.  

The best correlation against training data was found using a model where IAT is predicted 
from daily satellite IST combined with a seasonal variation assumed to have the shape of a 

cosine function ! · #$% &
'()*·+,

-	/*01
− 34  where A is the amplitude and φ is the phase. This can 

be rewritten in the form: 

5)*06 = 89 + 8- · ;<50=> + 8+ · #$% &
'()*·+,

-	/*01
4 + 8? · %@A &

'()*·+,

-	/*01
4 + 	ε   (Eq. 3.4.1) 

suitable for linear regression. The training data have been used to calculate the regression 

coefficients for each regression model pertaining to land and sea ice in both hemispheres 
(Table 3.4.3), giving a model fit with correlation of 94-96% and standard deviations of 3.2-

3.3°C against training data for all four ice surfaces (Table 3.4.4). Similar regression 

coefficients have been derived for Tmin (C9D$C?) and Tmax (E9D$E?). 

Table 3.4.3: Model regression coefficients 
 Offset (°C) 

α0 

IST factor  
α1 

Cos amplitude (°C)  
α2 

Sin amplitude (°C)  
α3 

Land Ice Northern Hemisphere 4.20 1.06 2.14 -0.74 

Southern Hemisphere 5.70 1.04 -0.42 -0.22 

Sea Ice Northern Hemisphere 1.46 0.89 -1.34 -1.24 

Southern Hemisphere 1.41 0.87 0.96 0.76 

 
Table 3.4.4: Statistics on the relation between observed and modelled IAT for the training 
data 
 Number of 

observations 
Correlation 
(%) 

Standard 
deviation 
(°C) 

Minimum 
difference (°C) 

Maximum 
difference 
(°C) 

Land ice N Hemisphere 13792 96.3 3.28 -12.9 12.2 
Land ice S Hemisphere 15122 96.5 3.26 -10.9 9.9 
Sea ice N Hemisphere 15010 96.2 3.25 -11.4 11.9 
Sea ice S Hemisphere 430 94.4 3.16 -11.5 8.6 
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3.4.4.3 Estimating air temperature  
The derived coefficients have been used to estimate IAT over land and sea ice from satellite 

IST during the period 2000-2009. Four datasets are developed covering the Northern 

Hemisphere sea ice, Northern Hemisphere land ice, Southern Hemisphere sea ice, and 
Southern Hemisphere land ice. Each dataset provides daily estimates of minimum air 

temperature (Tmin), maximum air temperature (Tmax), and mean air temperature (Tmean). 

The data sets are stored in compressed NetCDF-4 format and contain global IAT estimates 
on a 0.25 degree regular latitude-longitude grid. Each temperature estimate is associated 

with three categories of uncertainty: random uncertainties on the 0.25 degree daily scale; 
synoptic scale correlated uncertainty; and globally correlated uncertainty, including and 

excluding uncertainties related to the masking of clouds. The three types of uncertainties are 

also gathered in two total uncertainty estimates: one which includes the cloud mask 
uncertainty, and one which does not.  

Figure 3.4.9 shows the monthly mean near surface air temperature estimates averaged over 

the Greenland Ice Sheet (see also Figure 3.4.10 for an example map). The Greenland Ice 

Sheet exhibits a distinct annual cycle in near surface air temperature. The monthly mean air 
temperatures typically reach a maximum of -4°C during July and a minimum of about -28°C 

during winter.  As is common for Arctic climates, temporal variability is largest during winter 

due to a more vigorous atmospheric circulation. 

 

Figure 3.4.9: Monthly mean satellite-derived near surface air temperature estimates (°C) for 
the Greenland Ice Sheet. The shading represents the variability over the month.  
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3.4.5 Modelling uncertainties 
Uncertainty estimates for the satellite-derived IAT data are split into random, locally 

correlated and systematic uncertainties. The implementation for a particular grid cell at a 

particular point in time is outlined below. 

3.4.5.1 Satellite IST uncertainties 
First, we propagate the different uncertainty components for the IST retrievals onto the 0.25° 

latitude by 0.25° longitude grid used here.  

The random uncertainty component of the gridded satellite IST data is given by: 

FGH0' = IFG(6H'1J)*6'
+ + FG>*KLKM0'(K6

+      (Eq. 3.4.2) 

where RUinstrument and RUgeolocation are the uncertainty components due to instrument noise 

and geolocation errors in the marginal ice zone, respectively, from the same grid cell at the 
same point in time. 

The locally correlated uncertainties are given by: 

<<GH0' = I<<G*)(HH(=('/
+ + <<G0')KHNO*1*

+      (Eq. 3.4.3) 

where SSUemissivity and SSUatmosphere are the synoptic scale uncertainty components of the IST 

data due emissivity errors and atmospheric corrections. 

The grid-cell systematic uncertainties (LSUsat) are based on expert judgements and provided 

as a fixed value of 0.2°C. 

The cloud mask uncertainty is calculated from the cloud mask quality level of the grid cell, 

using 

PGH0',0=> = 8- ∙ (T0=> + 0.5 ∙ (5 − XY))      (Eq. 3.4.4) 

where α1 is the regression coefficient (see Table 3.4.2) and T0=> is an overall uncertainty 

level for CUavg, set to 0.8°C. The uncertainty components for Tmin and Tmax are found by 

replacing α1 with β1 and γ1 and T0=> with T)(6=2.8°C and T)0[=0.8°C. The higher	T-value for 

Tmin occurs because undetected clouds will appear as artificial cold temperatures, 
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especially affecting the Tmin field because they are harder to distinguish from the coldest 

surface temperatures. 

3.4.5.2 IAT uncertainties 
The random uncertainty component for Tmean is given by: 

FG0=> = I(8- · FGH0')+ + FGH0)NL(6>
+       (Eq. 3.4.5) 

where RUsampling is the uncertainty relating to sampling errors in space and time (see section 

3.4.5.3). The random uncertainty components for Tmin and Tmax are found by replacing 8- 
with C- and E-, respectively.  

Similarly, the locally correlated (synoptic scale) uncertainty component is given by: 

<<G0=> = I(8- ∙ <<GH0')+ + <<G1*L0'(K6
+     (Eq. 3.4.6) 

The term SSUrelation represents the standard deviation of the residuals calculated at in situ 

stations where both skin and air temperatures are available, i.e. the skin temperature-
predicted Tavg minus the observed Tmean, calculated during the model training process of 

these in situ only data (Table 3.4.6). Again, the uncertainty components for Tmin and Tmax 

are found by replacing 8- with C- and  E-, respectively. 

Table 3.4.6: Uncertainty estimates for the relationship error 
 Tmean (°C) Tmin (°C) Tmax (°C) 

Land ice 1.5 1.8  2.0 

Sea ice  1.7  1.8  2.1 

 

Three forms of systematic uncertainties are provided: the covariance matrix of the model 
coefficients, an estimate of the systematic uncertainty in IST for each grid cell and the cloud 

mask uncertainty component. The grid-cell systematic uncertainties are Y<G0=> = 8- ∙ Y<GH0' 
and cloud mask uncertainty PG0=> = 8- ∙ PGH0', and as above, the uncertainty components 

for Tmin and Tmax are found by replacing 8- with C- and E-, respectively. 
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3.4.5.3 Sampling uncertainty 
The sampling uncertainty is determined indirectly by closing the average RMS error budget 

when validating against the independent in situ air temperature measurements, taking the in 

situ air temperature uncertainty into account. This approach was used due to limited time 
and limited validation data, but has the disadvantage that other unaccounted uncertainty 

sources are artificially grouped with the sampling uncertainty. The sampling uncertainty is 

determined individually for the average, minimum and maximum temperatures, and for each 
surface type, see Table 3.4.6. 

Table 3.4.6: Sampling uncertainty (°C) for Tmean, Tmin and Tmax. 
 Tmean (°C) Tmin (°C) Tmax (°C) 

Land ice Northern Hemisphere 1.6  2.2  2.1 

Sea ice Northern Hemisphere  0.08 2.9 2.0 

Land ice Southern Hemisphere 1.6 1.5 3.8 

Sea ice Southern Hemisphere 1.7 5.7 2.9 

3.4.6 Validation 

3.4.6.1 Independent station evaluation 
An evaluation of the IAT regression model performance has been carried out by comparison 
to the independent in situ data (see Figure 3.4.8). Figure 3.4.10 shows an example of daily 

near surface air temperatures from 01-01-2008 in both hemispheres. Circles are in situ near 

surface air temperatures from coincidence independent stations and buoys. The overall 
model performance when compared to all independent stations/buoys/ships is summarized 

in Table 3.4.7. Note that the uncertainty of the in situ data used for comparison is also 
accounted for (Section 3.4.2.1) and reflected in the results below. 

                                            
8 This zero-value is likely caused by a slight overestimation of some of the other uncertainty 
quantities. 
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Figure 3.4.10: Daily mean air surface temperature (°C) over land ice and sea ice from 
January 1, 2008. Circles show in situ measurements. 
 
Table 3.4.7: Model performance (satellite-derived minus in situ measured air temperatures) 
when compared to all independent stations/buoys/ships.  

 

3.4.6.2 Comparison with ERA-Interim 
ERA-Interim (Dee et al., 2011) is a global atmospheric dynamical reanalysis produced by the 

European Centre for Medium-Range Weather Forecasts (ECMWF) covering the period from 
1989 to present. This analysis compares the ability of ERA-Interim and the proposed 

regression model to reproduce near surface air temperatures at all independent stations 

(See Table 3.4.8).  

 

 Number of 
observations 

Correlation 
(%) 

Bias 
(satellite 
derived  –  
in situ, °C) 

Standard 
deviation 
(°C) 

Root mean square 
difference (°C) 

Land ice Northern Hemisphere 20872 95.5 0.30 3.45 3.47 
Sea ice Northern Hemisphere  16092 96.5 0.35 3.18 3.19 
Land ice Southern Hemisphere 21327 97.3 0.12 3.11 3.11 
Sea ice Southern Hemisphere 620 91.9 0.20 3.55 3.55 
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Table 3.4.8: Statistics on the relation between ERA-Interim and in situ measured 
temperatures for independent test data. 

 

The comparison may not be truly independent here as a number of stations/buoys have 

been assimilated into the ERA-Interim data product. The figures below give an indication of 

the performance of ERA-Interim and the satellite-derived IAT at individual 
stations/buoys/ships for each surface type and hemisphere. 

 

Figure 3.4.11: Root mean square differences (°C) calculated for the Northern Hemisphere 
land ice (left) and sea ice (right). Blue columns are RMS obtained by comparing in situ with 
ERA-Interim while green columns are in situ compared with the satellite-derived IAT data 

 Number of 
observations 

Correlation 
(%) 

Bias (ERA 
Interim  – in 
situ, °C) 

Standard 
deviation 
(°C) 

Root mean square 
difference (°C) 

Land ice Northern Hemisphere 20872  96.4  3.41  3.18  4.66 
Sea ice Northern Hemisphere  16092  96.9  1.14  3.02  3.22 
Land ice Southern Hemisphere 21327  97.5  0.96  3.00  3.15 
Sea ice Southern Hemisphere 620  95,8  0.38  2.50  2.52 
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set. Only buoys with more than 200 observations are included in the figure. The last columns 
listed as “total” are the RMS obtained by using all test data. 

Figure 3.4.11 shows the RMS difference calculated between the independent test stations 
and ERA-Interim and between independent test stations and the satellite-derived air 

temperatures for both surface types in the Northern Hemisphere, respectively. Due to the 
large number of buoys in the Northern Hemisphere, these have been validated for each data 

source with all observations weighted equally. The last column refers to the RMS obtained 

by validating all test stations in one long time series weighting all daily observations equally. 
In the Northern Hemisphere the satellite-derived IAT agrees better with in situ observations 

for both surface types than does ERA-Interim. Over the Greenland Ice Sheet the satellite-
derived IAT performs better than ERA-Interim, while the northern Alaska site Barrows agrees 

better with ERA-Interim. Over sea ice ERA-Interim agrees better with in situ observations 

from the ECMWF data stream and Polarstern. However, the buoys from the ECMWF data 
stream may have been assimilated into ERA-Interim. The independent in situ observations 

from ACSYS, CRREL, DAMOCLES and FRAMZY are better reproduced by the satellite-

derived IAT. 

Due to limited observations over the Southern Hemisphere sea ice all buoy data have been 
included in Figure 3.4.12. Unfortunately, the Southern Hemisphere sea ice observations are 

limited to Polarstern and those obtained from the ECMWF data stream, where the latter may 

have been assimilated into ERA-Interim. For land ice, NCEI (NCDC) IAT observations are 
better reproduced by ERA-Interim, while AMRC are more equally well-reproduced by ERA-

Interim and the satellite-derived IAT. In one long time series the satellite-derived IAT is 
slightly better than ERA-Interim.  
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Figure 3.4.12: Root mean square differences (°C) calculated for the Southern Hemisphere 
land ice and sea ice, respectively. Blue columns are RMS obtained by comparing in situ with 
ERA-Interim while green columns are in situ compared with the satellite-derived IAT-data 
set. The last columns listed as “total” are the RMS obtained by using all test data. 

3.4.7 Conclusions and outlook  
The results obtained for the ice covered areas show that there is a large potential for using 

satellite observed surface temperatures for estimating near surface air temperatures. The 

satellite derived estimates of IAT validate similarly or better (in some areas) as compared 
with NWP estimates. In addition, the satellite-derived IAT is independent of NWP models 

and thus represents an important alternative to the model-based IAT estimates. The 
regression models presented here all work on satellite observations that are available in 

near real time and open up opportunities for a near real time estimation of IAT from 

satellites.   

With the sparse number of in situ observations in the Polar Regions, it is not a simple task to 
gather in situ observations for testing and tuning of the regression models.  Large efforts 

have been put into collecting and quality controlling in situ observations from various data 
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portals and research projects. Even more work would have resulted in more data, but such 

efforts are outside the scope of this project.  

The work demonstrated that it is crucial for the outcome to have a good reference data set 

that can be used to understand the conditions and determine the form of the regression 
model and reliable coefficients. The PROMICE network is an example of a reference data 

set for the Greenland Ice sheet which was very useful and improved the results. Similar 

reference data sets in other regions would be useful and would most likely lead to 
improvements in the IAT estimation.  

Future updates (outside EUSTACE) to the IAT based data set could include the addition of 
satellite and in situ observations up to present. This extension of the data sets would allow 

for inclusion of radiometric skin surface temperature observations from the sea ice off 
Qaanaaq gathered by DMI and from the Arctic Sea ice Pack, gathered by Met.no. In 

addition, communications are ongoing within the EUMETSAT OSI-SAF, to collect 

observations from the Antarctic Sea ice. These observations would allow for a more detailed 
training of the regression models and could probably lead to improved IAT estimation in a 

possible follow on project to EUSTACE.   
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3.5 Relationships over Lakes 

3.5.1 Introduction  
The role of lake surface water temperature (LSWT) measurements from satellite and in situ 
sources in EUSTACE was originally planned to be directly analogous to the use of land or 

ice surface temperature (LST or IST) measurements from satellite: i.e., relationships 
between skin LST/IST and surface air temperature (SAT) are established and used to invert 

satellite skin observations to SAT estimates (Tmean, Tmax and/or Tmin) applicable to the 

same day. However, it was understood from prior to the project that LSWT-SAT relationships 
are somewhat different because of the contrast in the effective thermal inertia of lakes 

compared to these other surfaces. The effective thermal inertia is the heat capacity per unit 

area, C_eff, applicable in the relationship between net heat flux per unit area, Q and time-
rate of change in surface temperature that occurs in response. Solid surfaces heat and cool 

over a very shallow depth on short (e.g., daily) timescales because they are limited to 
molecular thermal conductivity. Liquids mix because of buoyancy and/or mechanical 

disturbance, transferring heat vertically with an effective conductivity orders of magnitude 

greater than molecular conduction. This produces a correspondingly large C_eff. LSWTs 
therefore respond to SAT variations more slowly. The upshot is that radiometric skin 

temperatures on ice and (many) land surfaces are tightly coupled to (among other factors) 
SAT, such that a change in SAT (due to the passage of a weather front, for example) 

influences the skin temperature on a time scale that is short relative to the daily timescale of 

analysis required in EUSTACE, often in minutes. In contrast, lakes integrate the effect of 
SAT variations on timescales of many days, as will be elucidated below in the description of 

our adaptation of a published model of lake-air relationships. 
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The initial plan in EUSTACE was nonetheless to invert lake temperatures to give an SAT 

estimate that would apply as a weighted estimate over many days. Use of such an estimate 

in the context of a daily analysis would be somewhat more complex that use of a daily value, 
but concepts and definitions were established that could in principle accommodate such data 

as input to the EUSTACE analysis.  

It is now proposed to make a different use of satellite observations of LSWT that we think is 

more useful to a century-scale analysis, which will be described in outline below. Briefly, it is 
to use LSWT observations to tune a representation within the EUSTACE analysis of local 

lake effects on SAT (where local here means over and adjacent to lakes, but also non-

negligible at scales of 0.25° latitude/longitude, i.e., not concerning effects that are small 
compared to the scale of the EUSTACE analysis). The motivations for this modification of 

approach are: 

• to minimise the discontinuity in the degree to which lake effects are present in the SAT 

analysis prior to and after the advent of the satellite LSWT record, by devising an 
approach that can be used throughout the analysis period 

• to better capture the spatial nature of lake effects on SAT 

• because the number of lakes with useful pre-satellite-era LSWT or SAT records, always 
expected to be small, has turned out to be even smaller than anticipated. Specifically, 

daily measurements of SAT above lakes are extremely few (a dozen locations for only 

recent decades, perhaps) compared to the several hundred lakes globally expected to 
have a non-negligible effect at 0.25° resolution. 

 

The approach to LSWT-SAT relationships now being pursued is presented in the following 

sections. 

3.5.2. Interactions at the air-water interface 
The dynamic coupling between a lake and the atmosphere depends on the transfer of 

momentum, heat and material, at the air-water interface. The magnitudes of these fluxes 
influence physical processes within lakes which, in turn, have a major impact on the 

ecosystem. Via local weather, LSWT is strongly influenced by large-scale climatic forcing. 
The main atmospheric variables that influence lake surface water temperature (LSWT) are 

surface air temperature (SAT), solar radiation, cloud cover, wind speed, and relative 

humidity. The thermal interaction between a lake and the atmosphere is complex, as several 
distinct processes contribute to the heat flux and the resulting change in LSWT (Woolway et 
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al., 2015). The net heat flux, Hnet, into a lake results from the combination of individual heat 

flux terms, which can be described by the following equation (shown as the heat flux per unit 

surface in W m-2): 

\6*' = 	\H + \0 + \] + \* + \M +	\N + \( + \^,   (Eq. 3.5.1) 

where H_s is the net short-wave radiative heat flux due to solar radiation (considering only 
the incoming radiation that is actually absorbed), H_a is the net long-wave radiation emitted 

from the atmosphere toward the lake, H_w is the long-wave radiation emitted from the water, 

H_e is the latent heat flux (via evaporation/condensation), H_c is the sensible heat flux (via 
convection), H_p is the heat flux due to precipitation onto the water surface, H_i is the effect 

of the throughflow of water by inlets and outlets, and H_d is the heat flux exchange at the 
interface between the epilimnion (the surface layer in a thermally-stratified lake) and 

hypolimnion (the dense, bottom layer of a thermally-stratified lake). H_p, H_i, and H_d are 

often neglected when evaluating the influence of lakes on the overlying atmosphere (and 
vice-versa) and equation (3.5.1) can be simplified to: 

   \6*' = 	\H + \0 + \] + \* + \M,    (Eq. 3.5.2) 

where at any given time, LSWT tends towards an equilibrium temperature (Teq), defined as 

the temperature in which net heating/cooling (Hnet) is zero. Thus, lakes are often in a 
constant state of adjustment with the atmosphere. In equatorial lakes, where the intensity of 

shortwave radiation and atmospheric conditions both display relatively weak annual signals, 
lakes stay close to being in thermal equilibrium with the atmosphere. In this case, the 

individual heat flux terms may be large, but the net heat flux is relatively small. Thus, the 

SAT-LSWT relationship will be characterized by smaller difference and less variability in the 
tropics. In contrast, lakes at middle-latitude regions are constantly in a state of adjustment 

toward thermal equilibrium with the atmosphere. The time scale on which LSWT, for a 

particular lake, can react to the equilibrating water-air heat fluxes and the progression of the 
annual cycle in shortwave forcing determines how close to equilibrium the LSWT will be. If 

the time scale is long (a week or more), the lake may constantly be adjusting to atmospheric 
conditions and never truly reach equilibrium. If a lake never reaches equilibrium the dynamic 

coupling between it and the atmosphere is complex, whereas if LSWT is at or near T_eq the 

relationship between SAT and LSWT can be calculated with relative ease. Thus, for some 
lakes, the relationship between SAT and LSWT will be one of relatively close coupling, and 

given available SAT and LSWT data, a relationship can be calculated, allowing the influence 
of LSWT on SAT, and vice versa, to be determined. One complication for global scale 
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analyses back to the 19th Century, however, is the sparsity of useful pre-satellite-era LSWT. 

Thus, a method is firstly needed to estimate LSWT through time. 

The influence of LSWT on SAT is not limited to the air immediately above the lake. It has 

been shown that lakes of sufficient extent tend to moderate SAT anomalies in their 
surroundings (e.g. Bonan, 1995; Hostetler et al., 1994; Krinner, 2003; Lofgren, 1997; Long et 

al., 2007). This occurs due to the effective thermal inertia of a lake on daily to monthly 

timescales being much greater than surrounding land surfaces. Specifically, lakes undergo 
distinct diel (Woolway et al., 2016) and seasonal (Layden et al., 2015) cycles of surface 

temperature that differ from the surrounding land, primarily as a result of the large variations 

in surface roughness, heat capacity, surface albedo, effective heat capacity and energy 
exchange among different surfaces. Therefore, to capture the influence of lakes (i.e. LSWT) 

on SAT one needs to not only develop a method that accounts for the relationship between 
LSWT and the SAT directly overhead, but the method should also consider the spatial 

influence, thus the region of influence (ROI), of the lake on its surroundings. In the following, 

we provide information for methods in development for (i) estimating LSWT from readily 
available SAT data, and (ii) estimating the ROI of a lake on its surrounding SATs. 

3.5.3 Estimating LSWT - Modified Kettle model 
To estimate LSWT, we modify a previously published LSWT model, selected from a review 
of possible simple models because it has a minimal number of parameters, focuses directly 

on the SAT-LSWT relationship, and treats terms not linking SAT and LSWT implicitly. 
Moreover, the selected model can be readily parameterized for a particular lake from 

satellite LSWT and in situ or NWP air temperature. Specifically, we modify the commonly 

used Kettle model (Kettle et al., 2004). In its original form, the model estimates LSWT from a 
lagged and smoothed time series of SAT, and can be described as approximating the slow 

integrated response of LSWT to meteorological forcing, of which SAT is the primary driver. 
The model uses SAT observations to estimate LSWT by assuming that LSWT, Tw,t, is 

controlled predominantly by a combination of smoothed SAT, f(Ta,t), and clear-sky radiation, 

S. Specifically, Tw,t can be modelled as a linear combination of these variables as: 

5],' = _ + `ab50,'c + #<,           (Eq. 3.5.3) 

where  

ab50,'c = 850,' + (1 − 8)ab50,'e	∆'c,           (Eq. 3.5.4) 
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is an exponential smoothing function with the smoothing parameter, 8, in the interval [0, 1]. 

As described by Kettle et al. (2004), a, b, c, and 8 are determined using an iterative process 

that gives the best fit to the observed LSWT in terms of a mean absolute difference (MAD) 

statistic. In EUSTACE, we modify this approach to consider the known LSWT climatology 

(from satellite observations) of a given lake. Specifically, using the notation g = gh + gi, 
where gh is used to denote the anomaly and gi is used to denote the climatology, we can re-

formulate the Kettle model as: 

5] = 5]
h + 5]iiii = _ + `a(50

h + 50iii) + #<,           (Eq. 3.5.5) 

where the LSWT anomaly, 5]
h, can be expressed as: 

5]
h = `a(50

h),              (Eq. 3.5.6) 

and the LSWT climatology, 5]iiii, as: 

5]iiii = _ + `a(50iii) + #<,             (Eq. 3.5.7) 

which gives: 

5] = `a(50
h)jklkm

nopqrst

+ _ + `a(50iii) + #<jkkkklkkkkm
usvqrwpspxt

.            (Eq. 3.5.8) 

However, as we know 5]iiii from observations, primarily from satellite analyses (MacCallum 

and Merchant, 2012), equation 3.5.8 can be simplified further to: 

5] = `a(50
h) + 5]iiii,              (Eq. 3.5.9) 

which removes the cS term and relies instead on the observed 5]iiii, which imposes a more 

realistic form of the annual radiative cycle, implicitly. Therefore, our equation simplifies to 

only one unknown, a(50
h). The new formulation, similar to Kettle et al. (2004), is then solved 

iteratively to obtain b and _, which are determined according to the modelled Tw that 
provides the best fit with the observed LSWT in terms of MAD.  

3.5.4 Example for Lake Superior 
To demonstrate the usefulness of the modified Kettle model, we use one of the most 
complete LSWT and SAT datasets available from anywhere in the world. We concentrate on 

the data available for Lake Superior (North America), one of the world’s largest and most 

well-studied lakes. The LSWT and SAT data used from Lake Superior were collected from 
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the National Data Buoy Centre (NDBC), which maintains three surface buoys in Western, 

Central, and Eastern Lake Superior. These monitoring stations (45001, 45004, 45006) 

record LSWT and SAT with a reported accuracy of better than 1°C and a resolution of 0.1°C. 
They are often deployed in March or April, before the start of the thermally stratified season, 

and are removed in October or November, before the start of ice formation. An uninterrupted 
LSWT series is also available from the ATSR (Along Track Scanning Radiometer) 

Reprocessing for Climate: Lake Surface Water Temperature and Ice Cover (MacCallum and 

Merchant, 2012) dataset (ARC-Lake v2), which contains observations from August 1991 to 
December 2009, derived from the ATSR series, which consists of ATSR-1, ATSR-2, and 

Advanced(A)ATSR at a spatial resolution of 0.05°. For validation of ARC-Lake data with in 
situ LSWT temperature we extract LSWT for the pixel (0.05°) nearest to each buoy. These 

measurements were then compared to daily average NDBC buoy temperatures for all days 

when they were in operation. The three monitoring stations on Lake Superior had a MAD of 
057, 0.56, and 0.62 for buoys 45001, 45004, and 45006, respectively.  

As shown in Figure 3.5.1 SAT and LSWT in Lake Superior vary considerably throughout the 
seasonal cycle with substantial intra-annual variability. Comparison of daily mean SAT and 

LSWT reveals them to have essentially the same temporal structure at the seasonal level, 
but varying considerably at shorter timescales. The seasonal cycle of LSWT lags that of SAT 

during spring, but remains warmer during fall and winter. We see clearly how LSWT lags 

SAT in the early part of the year and LSWT remains warmer for longer in the latter stages of 
the seasonal cycle (Fig. 3.5.1b).  
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Figure 3.5.1. Time series of (a) daily-averaged lake mean surface water temperature 
(LSWT, °C; red) and surface air temperature (SAT, °C; black); (b) comparison of LSWT (red) 
and SAT (black) climatology; and (c) hysteresis cycle of LSWT and SAT climatology. The 
calibration period for the method presented in this investigation is shown by the light blue 
section in (a) and the validation period is shown in orange.  

The modified Kettle model simulates LSWT in Lake Superior with success (Figure 3.5.2). 
Specifically, we see that the model captures the inter-annual variability in the observed 

LSWTs and follows a clear seasonal cycle, never deviating much from the observed 
temperatures (MAD = 0.6ºC). The modified Kettle model captures this temporal variation 

including the lagged response of LSWT to SAT. 
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Figure 3.5.2. Example of simulated (red) LSWTs (°C) from the modified Kettle model with 
the observed LSWTs from NDBC (black). 

As LSWTs vary spatially within a lake, one would also expect that the model parameters in 

the modified Kettle model would vary across the lake surface. To evaluate the fine-scale 
variations in each model parameter, we simulate (using the SAT from NDBC) LSWT at each 

0.05º grid box (as available in the ARC-Lake data). We compare the spatial variations in 

each model parameter and the MAD with lake bathymetry data, available from the Global 
Lake Database (GLDB, v2), for which data were either digitised from different topographic 

maps or extracted from ETOPO1, a 1 arc-minute relief model of Earth’s surfaces (see 
Choulga et al., 2014). We find considerable spatial variations in the model parameters and in 

the model performance (i.e. MAD). However, our results demonstrate that the modified 

Kettle model works considerably well to generate a LSWT time series in Lake Superior and 
that none of the model parameters vary significantly with depth, and MADs were < 1ºC 

throughout. By using the model coefficients from the lake mean simulations, and modelling 
LSWTs spatially within Lake Superior, where the only differences among model runs were 
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the LSWT climatology, we find that the MAD in each 0.05º box was still below 1ºC. This 

implies an influence of the LSWT climatology for determining the accuracy of the Kettle 

model. One limitation of the above analysis is that one would ideally use spatially resolved 
SATs at the same spatial resolution as the LSWTs. However, these are not available (for 

example, SAT from reanalysis are often available at a spatial resolution of 0.75º) and thus 
SAT from the lake centre were used.  

3.5.5 Example for the African Great Lakes region 
To investigate further the usefulness of the modified Kettle model for simulating LSWTs, we 
simulate LSWTs for the African Great Lakes (AGL) region. For the AGL, we use two 

temperature datasets: SAT and LSWT. Satellite LSWT observations are available from the 

ARC-Lake dataset. SAT observations in the tropics are limited, especially at the lake 
surface. To our knowledge, no long-term datasets of SAT above any of the AGL are 

available, and in this study we are limited to only a few SAT observations available from a 
very few meteorological stations. Thus, we need to estimate SAT above the lake in order to 

derive an SAT-LSWT relationship. To determine SAT above and near the lakes, we use a 

regional climate model (RCM). Specifically, we use the Consortium for Small-Scale Modeling 
model in climate mode (COSMO-CLM) coupled to the Freshwater Lake model (FLake) and 

Community Land Model (CLM), to dynamically downscale a simulation from the African 

Coordinated Regional Downscaling Experiment (CORDEX-Africa) to 7-km grid spacing. The 
models involved in this study are described in detail by Thiery et al., (2015). SAT estimates 

from the RCM agree well with observed SAT from nearby meteorological stations (available 
from local airports through personal data contacts [not publically available] and from the 

GHCN-D), with a mean difference of 0.4K and a RMSE of 0.9K. However, unlike the 

meteorological station data, the model data is generated at a temporal resolution of 3 hours 
and provides an uninterrupted temperature series thus can be used to estimate LSWTs from 

the modified Kettle model.  

Prior to running the modified Kettle model, we first explore the LSWT-SAT relationships for 

one year (2002) at a 3-hour temporal resolution. We demonstrate that the ratio of SAT to 
LSWT is very close to unity in these lakes, with only minor deviations at high temporal 

resolution (Figure 3.5.3).  
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Figure 3.5.3: Annually averaged ratio of air (SAT) to water (LSWT) temperatures in the 
African Great Lakes region.  

 

Minor within-lake differences in the ratio of SAT to LSWT are observed, where in particular 

the shallowest regions in Lake Tanganyika demonstrate closer LSWT to SAT relationships. 

These spatial patterns are driven by the spatial variations in the depth of the upper mixed 
layer (Figure. 3.5.4), where shallower mixing depths result in closer associations between 

LSWT and SAT. This is consistent with the high co-variability known to exist between LSWT 
and SAT in shallow lakes (and hence shallow mixing depths). In deep lakes (or deeper 

mixed layers), in contrast, variations of LSWT driven by variations of SAT are highly 

dampened (Toffolon et al., 2014), due to the greater thermal inertia (i.e. the increased 
volume of water that is affected by surface heating). Similar patterns are observed 

throughout the seasonal cycle, with differences in the depth of the upper mixed layer being 

highly correlated with the SAT/LSWT relationship.  
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Figure 3.5.4: Annually averaged depth (m) of the upper mixed layer (epilimnion) in the 
African Great Lakes. 

For tropical lakes, we conclude that a direct linear relationship between SAT and LSWT 

exists, so LSWT can be used directly to estimate SAT, using a constant close to unity (i.e. 
1:1) for daily mean temperatures. The same is valid for daily minimum and daily maximum 

temperatures as shown in Figure 3.5.5. One of the main issues is the lack of in situ 

meteorological data above the water surface in these lakes; the only data available are from 
nearby meteorological stations (i.e. not above the lake surface).    
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Figure 3.5.5: (Left) Annually averaged ratio of the daily minimum air (SAT) to water (LSWT) 
temperatures in the African Great Lakes region. (Right) Annually averaged ratio of the daily 
maximum air (SAT) to water (LSWT) temperatures in the African Great Lakes region. 

To determine long-term LSWTs at daily resolution, we use the modified Kettle model. Model 

outputs demonstrate strong agreement between simulated and observed temperatures in 
Lakes Victoria, Tanganyika, Albert, and Kivu, with an average MAD <0.5ºC. Running the 

modified Kettle model for 263 lakes from around the world, driven with ERA-Interim data, 
demonstrates that the majority of lakes had a MAD of less than 1ºC (Figure 3.5.6) when 

compared to ARC-Lake. 
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Figure 3.5.6: Error statistics for the modified Kettle model when used for a global (n = 263) 
dataset. Colours signify MAD (°C). 

3.5.6 Spatial effects of lakes on surface air temperatures 
As mentioned in section 3.5.1, lakes also influence the climate of their surroundings, in 
particular in regions where they are abundant. Mediated by the fluxes of energy, moisture, 

and momentum, they significantly alter the surface energy and water balance in a particular 

region and therefore its climate. Here, we demonstrate the influence of lakes on the climate 
and introduce a possible method for their inclusion in the EUSTACE analysis by comparing 

model simulations for the African Great Lakes region with and without the presence of lakes. 
That is, the results of the RCM simulations described in section 3.5.3 are compared to a no-

lake simulation. The with-lake and without-lake simulations are identical, but for the no-lake 

simulations each lake pixel is replaced by a representative land pixel selected from all land 
pixels within a distance of 50km. This approach makes it possible to quantify the impact of 

lakes, which with their different surface roughness etc. will result in variable surface heat 

exchange compared to land, on the regional climate, in particular near-surface temperature.  

The climatological difference between the two simulations is seen to be up to 2°C, and the 
African Great Lakes tend to induce a cooling effect, on average (calculated as the annual 

average from 3-hour simulations). Only one meteorological station, with available 

observational data, appears to be strongly influenced climatologically (effect > than ~0.2°C) 
by the presence of these large lakes (Figure 3.5.7). The spatial structures of climatological 

influence are related to topography, and are at scales not resolved by the station density. 
Thus, neglecting to include lake effects when infilling between SAT stations can result in a 

substantial bias in SAT estimates.  
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Figure 3.5.7:  Mean difference in SAT (°C) from running identical model (and boundary 
forcing of synoptic situation) with no lakes (replacing them with appropriate land surface, as 
described in the text). Black markers show the location of the GHCN-D stations with 
available data.  

For EUSTACE, the key question is how the lake modifies the dynamics over time of the daily 

min, max, and mean SAT in its vicinity. We have explored this by deriving the leading EOFs 
(Empirical Orthogonal Functions) for Lake Victoria (and nearby Lake Albert) of the daily lake-

no-lake model differences after removing monthly-scale variability by Gaussian smoothing, 

Figure 3.5.8. These results illustrate the ‘average’ influence of the lake on its surroundings, 
neglecting the day-to-day variability which arises as a result of differences in wind 

speed/direction and cloud cover etc.  
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Figure 3.5.8:. EOF1 of daily lake-no-lake modelled differences for the Victoria region (for the 
same period of synoptic weather conditions). Left: daily min SAT. Middle: daily max SAT; 
Right: daily mean SAT. Sign attributed to pattern is arbitrary. The mean value has been 
calculated as a 24-hour mean rather than as the mid-value between max and min.  

The influence of lakes on the surrounding SAT is seen clearly for Lake Victoria from the 
EOFs (Figure 3.5.8). Next, we calculate the region of influence (ROI) of Lake Victoria on its 

surrounding area and generate a test dataset, which could be used within the infilling 

method of EUSTACE. To determine the ROI, we calculate the region in which the lakes 
‘significantly’ affect the SAT observations. We define a significant ROI as the region in which 

the presence of lakes increases or decreases the surrounding SAT by 0.5ºC (Figure 3.5.9), 
calculated after converting the EOFs to have units of temperature. 

The ROI illustrates that the SAT directly above and to the north of Lake Victoria is 
significantly influenced by the lake presence. Specifically, the region of maximum influence 

is to the north of the lake, clearly a topographic effect and driven by a lake-breeze system. 
To determine the magnitude of influence of the lake, we use the following relationship:  

T50 		= 	#(5]h − 50h)         (Eq. 3.5.10) 

where T50 represents the lake-effect modification and 5]h  and 50h  are the anomalies in water 

and air temperature, respectively, averaged over the lake surface. 5]h  can be calculated from 

the ARC-Lake dataset or, where no data is available, from the modified Kettle model, where 
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temperatures are averaged across the lake surface, thus representing the lake mean 

temperature. The SAT anomaly, 50′, can be defined as the sum of the SAT anomaly that 

would be obtained in the absence of any lake effects,	D6z, and the lake effect modification of 

SAT, T50: 

50′ = D6z + T50          (Eq 3.5.11) 

which we can parameterise as: 

50′ = D6z + #(5]′ − 50′)        (Eq 3.5.12) 

from which it follows that  

50′ =
M{|h}'~z

-}M
.         (Eq 3.5.13) 

In regions where the lake effect is negligible 50′ = D6z, and the measured (i.e. from nearby 

SAT data) values, D0�, are used directly as inputs to this analysis (c = 0). This also applies to 

periods when lakes are frozen, which will not be the case for Lake Victoria, but will occur in 

winter at higher latitudes. However, when the lake presence has an influence on 50′, as 

shown by the EOFs, the parameter c, must be calculated. We calculate ‘c’, which is a cell-
specific constant, by firstly calculating the anomalies in SAT for with and without lake model 

simulations. For cells that are influenced significantly by the presence of lakes, we calculate, 

by regression, the value of c in #(D] − D0) = D0 − D60, where D0 − D60 can be summarized by 

the time series of the first principal component of the EOF. The ‘c’ parameter is then 

multiplied to each cell within the ROI, which have been normalized from 0 - 1, and used in 
Equation 3.5.13 (Figure. 3.5.9). 
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Figure 3.5.9: Region of Influence of Lake Victoria on the surrounding surface air 
temperature (SAT). Red signifies large influence and blue signifies small influence. Black 
markers illustrate locations where SAT values are extracted from the model for the 
EUSTACE test case. The value within each cell will be used in Equation 3.5.13 to calculate 
the air temperature anomaly with the presence of lakes.  

3.5.7 Conclusion and outlook 
The influence of lakes on the surrounding SAT can be substantial, and in some instances be 

in excess of 2°C. Thus, in some regions, in particular where lakes are abundant, their 

influence on the surrounding climate needs to be considered. For EUSTACE, the key 
question is how the lake modifies the dynamics over time of the daily min, max, and mean 

SAT in its vicinity. (In the above analysis, we demonstrate the ROI on daily mean SATs, but 
similar maps are generated, and used in the analysis, for the minimum and maximum daily 

SATs. Thus, three different ROIs are calculated for evaluating the lake effect on regional 

SATs.) We have explored this by deriving the leading EOFs (Empirical Orthogonal Function) 
of the daily lake-no-lake model differences from a regional climate model output. Our results 

demonstrates that the dominant EOFs have spatial patterns that are clearly strongly 

influenced by the local topography, as observed by the spatial patterns of the ROI (for 
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example, the region south of Lake Victoria is not influenced by lake anomalies as a result of 

the presence of high ground limiting the lake influence). Previously, the influence of lakes on 

the surrounding SAT has been neglected in observational studies, specifically when 
observational data are not available and an infilling method is used. By following the 

approach presented here we demonstrate how the influence of lakes on SATs can be 
included and potentially allow for a greater accuracy of SAT estimates when meteorological 

observations are scarce. By running a RCM with and without the inclusion of lakes we 

demonstrate that a region of influence can be computed and then could be used within an 
infilling approach throughout the analysis period to better capture the spatial nature of lake 

effects on SAT. Moreover, when LSWTs are not available, we demonstrate a method for 
estimating LSWT from nearby air temperature observations. Specifically, we show that 

surface air temperatures and the LSWT climatology can be used to generate accurate (MAD 

< 1°C) time series of LSWTs throughout the world. The method presented can be used to 
determine LSWT back to the 19th Century. The next goal will be to generate a global dataset 

of lake ROIs and apply this approach (similar to the African Great Lakes example) to all 

lakes which ‘significantly’ influence the climate of their surroundings from around the world.  
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3.6 Application of a physically-motivated model for all surfaces 

3.6.1 Introduction 
The methods used for predicting surface air temperature from satellite observations in 
EUSTACE have primarily been statistical, whereby relationships over different surfaces have 

been defined using empirical data and applied to satellite observations at local-to-global 

scales (sections 3.2-3.4).  This is very much in line with what has been documented 
elsewhere in the published literature (Benali et al., 2012; Chen et al., 2014; Good, 2015; 

Kilibarda et al., 2014; Janatian et al., 2016; Lüpkes et al., 2008; Oyler et al., 2015; 
Parmentier et al., 2015; Tetzlaff et al. 2013; Vihma and Pirazzini, 2005; Vihma et al., 2008 

and Zhang et al., 2011), and produces acceptable results with quantifiable uncertainties 

(sections 3.2-3.4).  This section summarises trials conducted using a physical model for 

estimating satellite-derived air temperature, an alternative approach that has received only 
very limited attention in the published literature (e.g. Sun et al. (2005)).   

An overview of the physical model used and the sensitivity of its surface air temperature 

predictions to various input data is presented in section 3.6.2.  In section 3.6.3, the ability of 

the model to predict instantaneous, sub-daily surface air temperature at a station in Alaska is 
assessed using only in situ observations to prescribe the required inputs to the model.  This 

gives an approximate upper limit (or ‘best-case scenario’) of the expected performance of 
the physical model under the test conditions.  The performance of the model in predicting 

instantaneous 6-hourly surface air temperature over Europe and Africa using satellite LST 

data is assessed in section 3.6.4.  This second experiment provides insight into the 
feasibility of applying the model on regional to global scales in order to provide satellite-

derived air temperature estimates to use in an analysis such as that provided by the 
EUSTACE project. 

3.6.2 Overview of the Physical Model 
The physical model adopted here has been built using modules from the JULES (Joint UK 

Land Environment Simulator) model, which is a community land surface model based on the 
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Met Office Surface Exchange Scheme (MOSES) (Best et al., 2011; Clark et al., 2011).  In 

JULES, surface air temperature (T2m) is calculated from the skin temperature (Tskin), and 

certain properties of the land surface and lower atmosphere.  The JULES modules (version 
date 24 January 2012) that perform this core task have been aggregated here to produce a 

stand-alone model that estimates T2m from prescribed atmospheric and surface data:   

T2m =(Tskin - g/cp*1.5 + R *  (T1 - Tskin + g/cp *(z1+z0m-z0h)))   (Eq. 3.6.1) 

Where g is the acceleration due to gravity (9.81 ms-1), cp is the specific heat capacity of dry 

air (1.005 kJ/kg.K), and T1 is the temperature of the lowest atmospheric layer, which is at 

height z1. The parameter z0m is the roughness length for momentum, while z0h is the 
roughness length for heat and moisture.  R is the ratio of the Monin-Obukov stability 

functions of observation height (i.e. screen level) over the lowest atmospheric level.  
Calculating this ratio is the primary computational function of the physical model, which 

includes calculation of surface transfer coefficients (e.g. heat and moisture, surface scaling 

velocity, Monin-Obukhov length).   

The input parameters required by the physical model are: 

• Tskin (skin temperature) 

• T1 (temperature of the lowest atmospheric layer available) 

• Z1 (height of T1; this varies, depending on the atmospheric temperature data 
available) 

• z0m (roughness length for momentum)  

• Wind speed at some height above the surface (W) 

• Height of W 

• Boundary layer height 

The parameter z0h (roughness length for heat and moisture) is assumed to be z0m/10 (J. 
Edwards, Met Office, Personal Communication). Expected values for z0m are shown in 

Table 3.6.1. 

A key consideration in the use of a physical model such as this to estimate satellite-derived 

air temperatures is the prescription of these input parameters. Information on these variables 
has to be obtained from somewhere and any source of such data is likely to contain errors, 

so it is important to understand the sensitivity of the predicted air temperature to those 

parameters, in order to determine whether or not the method can be reliably used. Figures 
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3.6.1 and 3.6.2 show the sensitivity of the predicted T2m to each of the (non-height) input 

parameters, keeping all other parameters fixed.   

The results show that in these trial cases, there is virtually no sensitivity to the boundary 

layer height and only a low sensitivity to z0m (up to ~1 °C).  For T1>Tskin (Figure 3.6.1), i.e. 
in stable conditions, there is moderate (a few °C) sensitivity to changes in wind speed at low 

wind speeds, but only a low sensitivity (up to ~ 1 °C) at higher wind speeds, and where 

T1<Tskin (Figure 3.6.2).  In contrast, the sensitivity to Tskin for Tskin<T1, and to T1 at all 
temperatures, is almost one-to-one.  For Tskin>T1, in unstable conditions, the sensitivity to 

Tskin is markedly lower. 

Table 3.6.1:  The Davenport-Wieringa roughness-length classification (Stull, 2015, page 
700). The Land Cover CCI classes mapped to each value of z0m used in this study are also 
shown. 

Class z0m (m)  Description Land Cover CCI classes 
Sea 0.0002 

 
sea, paved areas, snow-covered flat 
plain, tide flat, smooth desert  

Water bodies (210) 

Smooth 0.005 beaches, pack ice, morass, snow-
covered fields 

Permenant snow and ice (220) 

Open 0.03 
 

grass prairie or farm fields, tundra, 
airports, heather 

Grassland (130), lichens and 
mosses (140), sparse 
vegetation (150), bare areas 
(200) 

Roughly 
open 

0.1 cultivated area with low crops and 
occasional obstacles (single bushes) 

Croplands (10-30) 

Rough 0.25 High crops, crops of varied height, 
scattered obstacles such as trees or 
hedgerows, vineyards 

Mosaic natural vegetation (40), 
flooded shrub/herbaceous cover 
(180) 

Very rough 0.5 mixed farm fields and forest clumps, 
orchards, scattered buildings 

Mosaic tree, shrub, herbaceous 
cover (100, 110), shrubland 
(120), Flooded tree cover (160, 
170) 

Closed 
spaces 

1.0 regular coverage with large size 
obstacles with open spaces roughly 
equal to obstacle heights, suburban 
houses, villages, mature forests 

Tree cover classes (50-90) 

Chaotic ≥2 Centres of large towns and cities, 
irregular forests with scattered 
clearings 

Urban areas (190) 
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Figure 3.6.1: Sensitivity of T2m predicted by the physical model to perturbations in skin 
temperature (Tskin), the temperature of the lowest atmospheric model level (T1), roughness 
length for momentum (z0m), wind speed of the lowest atmospheric level (W), and the 
boundary layer height (BLH) .  In each case, all parameters are fixed with only the parameter 
of interest allowed to vary.  Fixed parameters: Tskin = 10 °C, T1=15 °C,  
z0m = 3E-4 m, W=2 ms-1, BLH=1000m.  The dashed lines represent the one-to-one line. 
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Figure 3.6.2: As for Figure 3.6.1 but for fixed parameters: Tskin = 20 °C, T1=5 °C,  
z0m = 3E-4 m, W=2 ms-1, BLH=1000m. 

3.6.4 Test application of the physical model in the Arctic using ARM in situ 
observations 
Application of the model in Arctic conditions is challenged by the very limited amount of in 

situ observations for validation. In this section, we focus on the NSA Barrow Facility located 
on the northernmost point in Alaska, USA. This station is unique for its thorough and 

relatively consistent measuring program, and thus the seasonality, daily cycle and effects of 
extreme Arctic conditions can be studied at high temporal resolution. In this section, the 

model is used to calculate full resolution (1-minute) surface air temperature (T2m) based on 

observations of skin temperature (Tskin), 20 m temperature (T1) and 20 m wind speed (W). 
The predicted T2m is validated using in situ T2m observations. The analysis is performed on 

available data from October 2003 to March 2015, for periods with snow covered ground 
(generally mid-September to start-June). 

The Tskin observations are surface infra-red temperatures measured by ground-based 
radiation pyrometers as a part of the ARM climate research facility in Barrow, available from 
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https://www.arm.gov/instruments/irt. The 2 m and 20 m air temperature and 20 m wind 

speed are measured from a meteorological tower at the facility, and data are also available 

for 10 m and 40 m height (Atmospheric Radiation Measurement (ARM) Climate Research 
Facility, 2003). All are 60-second averages of measurements made every 1-2 seconds. 

Finally, daily surface conditions based on in situ measurements of albedo are used to filter 
snow-only days, to make the results representative for Arctic snow and ice surfaces. z0m is 

assumed to have a fixed value of 0.0005 m, in between the “Sea” and “Smooth” classes of 

the  Land Cover Climate Change Initiative (CCI) data set (Table 3.6.1) (Bontemps et al., 
2012, Poulter et al., 2015).  A fixed boundary layer height of 1000 m is assumed for all T2m 

calculations.  The impact of this assumption is tested below (Figure 3.6.4). 

Figure 3.6.3 and Table 3.6.2 shows histograms and statistics of the modelled T2m minus the 

observed T2m for the entire dataset 2003-2015, with the observations split into three 
categories: unstable conditions (Tskin > T1), stable conditions (T1 - 5°C < Tskin ≤ T1) and 

very stable conditions (here defined as Tskin ≤ T1 - 5°C). Overall, the model performance 

shows a small cool bias of -0.2°C and a standard deviation of 1.1°C, with a long cold tail, but 
this is made up of these distinct populations arising from the three stability conditions. The 

unstable conditions occur in 35% of the samples, and here there is a small warm bias of 
0.3°C, and a narrow standard deviation of 0.3°C, with a small warm tail. For stable 

conditions (54% of all cases), the model has zero bias, but a slightly larger spread (standard 

deviation of 0.6°C). During the very stable conditions (11% of all cases), the model has less 
skill, with a cool bias of -2.3°C and root-mean square differences of 3.1°C. This category 

thus contains the most data with elevated model errors, but still shows a correlation of 0.96 
between model and observations. 
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Figure 3.6.3: Distributions of physically-derived minus observed T2m observations (°C) for 
unstable (yellow), stable (red) and very stable (blue) conditions for the Barrow Facility over 
snow covered grounds, 2003-2015. 

Table 3.6.2: Summary of physical model results using in situ observations from the Barrow 
Facility over snow covered grounds, 2003-2015.  Column ‘Bias’ Indicates the mean modelled 
minus observed T2m difference, ‘STD’ is the standard deviation, ‘RMSD’ is the root-mean 
square difference and ‘r’ is the correlation coefficient. 

 Bias STD RMSD r Count 
Unstable conditions (Tskin > T1) 0.3°C 0.3°C 0.4°C 1.00 1 061 224 
Stable conditions  (T1 - 5°C < Tskin ≤ T1) 0.0°C 0.6°C 0.6°C 1.00 1 604 201 
Very stable conditions (Tskin ≤ T1 - 5°C) -2.3°C 2.1°C 3.1°C 0.96  320 686 
All conditions -0.2°C 1.1°C 1.1°C 0.99 2 986 111 

 

Figure 3.6.4 shows time series of observed and modelled data from three selected one 
month periods, January, April and October 2007. The summer period was left out due to lack 

of snow, and the year 2007 was chosen because it has good data coverage. For these 
periods, sensitivity experiments were carried out on hourly data, similar to the experiments 

described in section 3.6.2, but for the observed Arctic conditions. Each of the (non-height) 
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input parameters was perturbed, keeping all other parameters fixed at each time step, and 

the coloured lines in Figure 3.6.4 show the ranges described by one standard deviation of 

each of the perturbed results. The temperatures Tskin and T1 were perturbed linearly 
between ±5°C of the observed; z0m logarithmically between 1·10-4 and 50 m; W linearly 

between ±5 m/s of the observed with a minimum of 0 m/s; and the boundary layer height 
linearly between 0 and 3000 m. 

The results demonstrate that there is virtually no sensitivity to the boundary layer height and 
only a low sensitivity to z0m (in most cases less than 1°C), which is consistent with the 

results presented in section 3.6.2. For situations with very stable conditions, the results are 

sensitive to changes in wind speed, while for other conditions, the sensitivity to wind speed 
is low. During both stable and unstable conditions, the dependence on variations in T1 is 

almost one-to-one, but for the very stable conditions, the dependence on variations in T1 
diminishes. The dependence on variations in Tskin is smaller, generally between ¼ and ½ of 

the dependence on T1, except for the very stable conditions, where the dependence 

becomes close to one-to-one. 
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Figure 3.6.4: Time series of modelled and observed T2m (°C) for testing model sensitivity 
from January (top), April (lower left) and October (lower right) 2007. The black line shows 
modelled temperature with the unperturbed model settings (using actual observations), cyan 
dots show observations, and the colored lines show ±1 STD for perturbation experiments 
with variation of Tskin (red), T1 (green), z0m (blue), W (purple), and boundary layer height 
(yellow). The bottom colour band indicate unstable (yellow), stable (red) and very stable 
(blue) conditions. 
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This shows that when the physical model is applied to a combination of satellite observations 

of skin temperatures and upper air temperature and winds from atmospheric reanalysis 

models or weather forecasts, any errors in the upper air parameters will be propagated 
almost one-to-one into the modelled T2m. This is especially important in the Polar Regions, 

where atmospheric model results are of decreased quality compared to other regions of the 
world (see also Section 3.4). 

3.6.5 Test application of the physical model over land using SEVIRI LST and 
ERA-Interim atmospheric data 
The application of the physical model on a regional-to-global scale requires a consistent set 

of the input data required by the model.  In this section, the feasibility of using the model in 
this way is assessed by calculating six-hourly T2m from satellite retrievals of Tskin, using 

reanalysis data to estimate lower atmospheric temperature (T1) and wind speed (W).  The 
predicted T2m are evaluated by comparison to spatially and temporally collocated station 

observations of T2m from the HadISD data set (Dunn et al., 2012).  The analysis is 

performed for January, April, July and October 2010. 

The LST data are sourced from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) 
GlobTemperature ‘GT_SEG_2P’ products, which utilised the Land Surface Analysis Satellite 

Application Facility (LSA-SAF) LST retrieval scheme (Trigo et al., 2008; Freitas et al., 2010, 

Freitas et al., 2013) and for which uncertainty estimates were estimated in EUSTACE 
consistent with those estimated for other satellite data used elsewhere in the project.  

Atmospheric temperature and wind speed is obtained from the lowest model level (10m 

height) of the ERA-Interim reanalysis (Dee et al., 2011).  The physical model is run for 
individual SEVIRI pixels, which have a resolution of 3 x 3 km at 0° latitude/longitude. 

Estimates for z0m for each pixel are obtained from the 300-m Land Cover Climate Change 
Initiative (CCI) data set (Bontemps et al., 2012, Poulter et al., 2015), based on the dominant 

land cover class within each SEVIRI pixel (Table 3.6.1).  A fixed boundary layer height of 

1000m is assumed for all T2m calculations as this information is unavailable in the ERA 
Interim NetCDF files available for the study.  The impact of this assumption is expected to be 

negligible, given the apparent insensitivity of the modelled T2m to the boundary layer height 
demonstrated in sections 3.6.2 and 3.6.3. 

Figure 3.6.5 shows histograms of the SEVIRI LST minus HadISD T2m observations for April 
2010 over Europe, with separate panels for each six-hourly time slot.  All distributions show 

pronounced ‘cold tails’, where LST is significantly colder than T2m.  The cold tails indicate 

that the SEVIRI LST data suffer from significant cloud contamination, which causes LSTs to 
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be cold-biased, despite using the quality information present in the GlobTemperature LST 

files to exclude all pixels flagged as ‘cloud contaminated’ or ‘low confidence’ from the 

analysis.  Fortunately, HadISD includes observations of cloud fraction (0 to 8 oktas), 
although the data availability is not as complete as for T2m.  Figure 3.6.6 shows the same 

SEVIRI LST minus HadISD T2m observation distributions but only using satellite-station 
matchup pairs where the observed cloud fraction is reported to be 0 oktas.  Although the 

number of data is significantly reduced, the distributions are now close to Gaussian, 

although there still appears to be some residual cloud contamination.  This could be due to 
observer error in the HadISD data, or more likely because of cloud parallax effects, where 

cloud that is not directly above the HadISD station is obscuring the satellite view of the 
surface because of the satellite view geometry.  As expected, the relationship between LST 

and T2m differs with time of day.  LST is cooler at night (0Z, 18Z) and warmer during the day 

(6Z, 12Z), when clear-sky insolation usually elevates LST above T2m (Good, 2016 and 
Section 3.3).   

 

Figure 3.6.5: Distributions of collocated SEVIRI LST minus HadISD T2m observations for 
(a) 0Z, (b) 6Z, (c) 12Z and (d)18Z over Europe during April 2010. ‘r’ is the correlation 
coefficient between SEVIRI and HadISD.  The median and modal SEVIRI minus HadISD 
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difference is indicated on the plot together with the Root Mean Square Difference (RMSD).  
‘Ndata’ indicates the total number of matchups and ‘Nstns’ indicates the number of unique 
HadISD stations. 

Figure 3.6.6: As for Figure 3.6.5 but for observations where the HadISD cloud fraction 
observation is present and recorded as zero oktas. 
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Figure 3.6.7: As for Figure 3.6.5 but for predictions of T2m using the physical model with 
SEVIRI LST and ERA-Interim atmospheric parameters. 

Figure 3.6.7 shows the equivalent distributions and statistics for the comparison between the 
physically-derived T2m (using SEVIRI LST and ERA-Interim data) and HadISD T2m 

observations.  In all cases, the median modelled minus observed difference is closer to zero 

and the root-mean square difference (RMSD) is reduced by a few °C, compared with the 
analysis using LST.  It is worth noting that the RMSD will be inflated by the remaining cloud 

contamination.  The correlation coefficients are also slightly improved compared with the 
LST-T2m comparisons in Figure 3.6.6. 

Table 3.6.3 summarises the results for all months for Europe (35 to 70 °N, -10 to 20 °E), 
North Africa (0 to 35 °N, -15 to 15 °E), and South Africa (0 to -35 °N, 5 to 35 °E).  These 

regions encompass most of the SEVIRI land field of view.  Longitudinal ranges have been 
restricted to 30° in order to avoid very large variations in local solar time across a study 

region (30°= 2 hours variation in local solar time).  Overall, the results are encouraging.  

Median modelled minus observed differences are typically a few tenths of a degree, and 
nearly all are <|1.0|.  Median differences that exceed |1.0| are most common in the 18Z 
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results for Europe and North Africa, and are restricted to the 12Z results for South Africa.  

This suggests that the model may not be capturing the shape and/or timing of the T2m 

diurnal cycle accurately, due to the simplified model used.  The RMSDs for Europe range 
between 4.9 and 9.0 °C, with a mean over all seasons/times of 6.1 °C.  The RMSDs are 

lower for the African regions, with a mean of 4.0 and 3.4 °C for North and South Africa, 
respectively.  These lower RMSDs are likely to be because residual cloud contamination will 

be higher over Europe owing to stronger cloud parallax effects at these latitudes (the SEVIRI 

view-zenith angle is lower close to the Equator so the satellite will ‘see’ cloud that is closer to 
that observed in situ).  Correlation coefficients are moderate to high, tending to be higher in 

winter months and lower in the summer, with the mean values of 0.70, 0.81 and 0.71 for 
Europe, North and South Africa, respectively.   

Table 3.6.3: Summary of physical model results using SEVIRI LST.  Column ‘Med.’ Indicates 
the median SEVIRI minus HadISD T2m difference.  ‘RMSD’ is the root-mean square 
difference and ‘r’ is the correlation coefficient. 

Month Time Europe North Africa South Africa 
Med. 
(°C) 

RMSD 
(°C) r Med. 

(°C) 
RMSD 
(°C) r Med. 

(°C) 
RMSD 
(°C) r 

January 0Z -0.8 6.3 0.84 -0.8 4.0 0.85 -0.1 6.4 0.34 
 6Z -0.5 5.2 0.89 -0.2 3.4 0.85 -0.4 5.5 0.36 
 12Z -0.6 5.7 0.87 0.0 1.8 0.96 1.9 3.3 0.83 
 18Z -1.3 5.0 0.89 -2.4 3.7 0.93 0.7 2.5 0.77 
April 0Z -0.9 6.6 0.58 -1.3 9.8 0.51 0.6 6.5 0.45 
 6Z -0.2 4.9 0.65 -0.4 4.2 0.79 0.2 1.8 0.89 
 12Z 0.2 6.1 0.67 0.9 3.2 0.88 1.3 2.4 0.92 
 18Z -2.2 6.3 0.70 -1.7 5.2 0.83 0.3 2.9 0.77 
July 0Z 0.0 7.1 0.55 -0.6 3.5 0.72 0.6 4.1 0.78 
 6Z -0.4 5.8 0.56 0.4 2.7 0.71 0.7 2.6 0.89 
 12Z -0.3 6.9 0.63 1.2 3.0 0.84 0.2 2.0 0.88 
 18Z -1.9 9.0 0.56 -1.2 2.5 0.92 -0.3 4.0 0.71 
October 0Z -0.3 6.5 0.61 -0.3 6.1 0.60 -0.1 4.3 0.68 
 6Z 0.3 4.9 0.71 0.4 2.4 0.92 1.0 2.4 0.85 
 12Z -0.3 5.5 0.75 1.0 4.4 0.77 1.9 4.7 0.64 
 18Z -0.9 5.6 0.69 -1.1 3.2 0.91 -0.3 4.7 0.57 
Average values -0.6 6.1 0.70 -0.4 4.0 0.81 0.5 3.4 0.71 
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3.6.6 Test application of the physical model over oceans using CCI SST and 
ERA-Interim atmospheric data 
The physical model described in the above section was used to estimate air temperatures 
over the ocean from sea surface skin temperatures based on satellite retrievals. The SST 

skin retrievals were taken from the SST CCI ATSR data set on a daily 0.25° 
latitude/longitude grid. Atmospheric boundary conditions – wind speed and air temperature 

at the lowest atmospheric level – were taken from the ERA-interim reanalysis (for 2005-

2010). The roughness parameter was set to that of the sea (very smooth, 0.0002) and other 
parameters were set as for the land data. Four time steps are provided each day at 0000 

0600 1200 and 1800. Four daily estimates of the 2m air temperature were made using the 
same SST skin temperature and these were averaged to form a daily mean. 

The air temperatures estimated from satellite data using the physical model and the air 
temperatures estimated from satellite data using the empirical relationships were each 

compared to in situ data for the period 2005-2010. On average the estimates from the 

physical model had a cold bias when compared to the in situ measurements which is 
opposite to the expected bias. The 2m air temperatures output by the physical model should 

be warmer than the 10m air temperatures represented by the in situ data. In comparison, the 
empirical estimate had a slight warm bias. For the physical model, the magnitude of the cold 

bias exceeds 1°C across the Northern Hemisphere oceans, but in the tropics, the average 

bias was typically less than 0.5°C with some areas showing a small warm bias. For the 
empirical model, the tests showed that local biases did not exceed 0.5°C except in a few 

locations and were more consistent in sign. 

The standard deviations of the differences between the estimated and measured air 

temperatures were very similar for the two different methods (physical model and empirical 
model): around 1.5°C. This implies that if the residual biases in the physical model can be 

dealt with (and their persistence suggests that this is viable) then the physical model can 

produce air temperatures that are as good as the empirical model derived here. 

It is worth noting that the lowest atmospheric level in the reanalysis is notionally 10m which 
is the height to which the in situ ship data are harmonised. Comparing the in situ data at a 

height of 10m directly to the reanalysis at a height of 10m results in identification of very 

large apparent biases in the reanalysis. Given the sensitivity of our physically-derived air 
temperature estimates from satellite to our prescription of 10m air temperature (Section 

3.6.2), this results in the cold bias we see in the estimated surface air temperature over the 

ocean. 
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3.6.7 Conclusions and outlook 
This section presents the results of experiments to assess the feasibility of using a physical 

model to predict T2m from satellite Tskin data.  In a project such as EUSTACE, this would 

provide an alternative source of satellite-derived T2m data to satellite-derived estimates 
based on surface-specific empirical statistical models.  The advantage to such a scheme is a 

consistent approach over all surfaces (land, ocean, ice and lakes) and one that does not 

directly use station-based T2m observations to train a model, leaving these observations 
free to be utilised elsewhere, e.g. for validation.  The main disadvantage of the physical 

model is the dependency on atmospheric data.  For a EUSTACE-type analysis, the only 
viable source of these data is from reanalyses, which suffer from limitations and 

inaccuracies, particularly in regions where observations are sparse, such as at the poles. 

This leaves the surface air temperature estimates tied to the dynamical reanalysis, which 
removes the intended independence of EUSTACE estimates from NWP-model-based data. 

The physical model presented here is very sensitive to the upper air temperature so that any 
errors in this parameter will be propagated directly into the T2m estimate on a near one-to-

one basis.  Computational expense is also higher for the physical model compared with the 

empirical statistical models. 

Nevertheless, this study has demonstrated that that the physical model tested here appears 

to produce T2m estimates that are comparable to T2m estimates based on empirical 
statistical models (also see sections 3.1-3.3).  The accuracy of the physical model is good 

when used with high-quality in situ observations, except when the atmospheric stratification 
is very stable.  This is true even for extreme Arctic conditions and a mean model-predicted 

minus observed T2m difference of -0.2 °C (RMSD 1.1 °C) is obtained for the test case 

presented here at the ARM-Barrow site in Alaska.  Reasonable results are also obtained 
when trialling the model with inputs based on satellite LST and ERA-Interim reanalyses over 

Europe and Africa.  Median model-predicted minus observed T2m differences are ~|0.5| °C, 
with an estimated RMSD of ~ 4 °C, although this can be much higher where the satellite 

LSTs are cloud-contaminated.  Given the 1-3 °C accuracy of the satellite LST data used 

here (Trigo et al., 2008; Freitas et al., 2010, Freitas et al., 2013), inaccuracies in the ERA-
Interim data, and the likely variance inflation due to the station point vs. satellite areal-

averaged pixel matchup uncertainty, which may be ~ 2 °C over land (K. Veal, University of 
Leicester, Personal Communication) this is a very encouraging result and is comparable to 

the performance of the LSAT empirical statistical model (section 3.3). 

The physical model predicts instantaneous T2m so using the model to estimate daily Tmin, 

Tmax or Tmean would be best achieved using high-frequency Tskin observations to capture 
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the T2m diurnal cycle.  This could then be used to calculate Tmin and Tmax directly.  For 

most of the earth, this could be achieved using geostationary Tskin observations.  At high 

latitudes, where geostationary data are less reliable owing to the high satellite view angle, 
polar-orbiting data could be used, which provide more frequent overpasses at high latitudes.  

The Tskin data could be spatially aggregated to the required output T2m resolution before 
running the model to reduce computational expense.  A reanalysis product, such as ERA-

Interim would be needed to provide the atmospheric parameters required by the model.  This 

would have to be temporally interpolated to the frequency of the Tskin observations; the 
impact of this has not been assessed in this study.  The evidence presented in section 3.6.2 

suggests that the physical model tested here may not capture the timing of the diurnal cycle 
accurately.  However, for calculation of Tmin and Tmax from the diurnal cycle of predicted 

T2m this may not be an issue provided the amplitude is correct.  As for the empirical 

statistical models, cloud contamination in satellite Tskin data remains the biggest challenge 
in estimating T2m from satellite data.   
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4. Lessons learnt and future work 
The use of empirical models for developing relationships between skin and near surface air 

temperature requires in situ observations for each surface type. The amount of in situ 

observations were particularly critical for the Polar Regions and for lakes. This was a known 
issue and efforts were allocated in WP3 to rescue and quality control observations from 

scientific campaigns. These rescuing efforts improved the situation for the Polar Regions, 
but the amount of available in situ observations from lakes turned out to be below the critical 

mass required, and another strategy had be pursued. It is evident that for future work, more 

accurate relationships could be obtained if more in situ reference data were rescued 
followed by an improved characterization of the different types of observations.    

A common uncertainty approach was pursued within the different regions and satellite 

observations. This was a parallel track along with the development of relationships and had 

not been done before for the satellite observations over land and ice. The result from this 
work is a unique collection of satellite data sets with a consistent approach towards 

uncertainty estimation for all surfaces. It is, however, also clear, that modelling and verifying 

the different uncertainty components in the satellite retrievals are huge tasks that could be 
addressed in a future dedicated EU project. As a result, improvements can be made to these 

uncertainty components and in the understanding of the characteristic scales of the different 
components. In addition, it turned out to be challenging to communicate how to use these 

uncertainties to the users in WP2. Several separate meetings have already been held on this 

topic and more meetings are required when WP2 will start working with the data.   
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The results from the physical modelling show some promising results and have the potential 

to provide the next generation relationship method. Future developments outside this project 

could focus upon further utilization of the physical models. It is important to stress, however, 
that this approach depends upon the boundary conditions from NWP to a much higher 

degree than it depends upon the satellite observations. Using the physical modelling 
approach will thus reduce the new information gained from the satellite observations.  

Finally, the consistency in the surface air temperature relationships at the boundaries 
between two surface types (edgelands) could be improved. This is particularly the case for 

the temporally and spatially varying marginal ice zone, but also applies for the other 

edgelands, such as the ocean – land interface. 


